
DSPDet3D: Dynamic Spatial Pruning for 3D Small Object Detection

Xiuwei Xu1,2, Zhihao Sun3, Ziwei Wang1,2, Hongmin Liu3 Jie Zhou1,2, Jiwen Lu1,2*

1Department of Automation, Tsinghua University, China
2Beijing National Research Center for Information Science and Technology, China

3The School of Intelligence Science and Technology, University of Science and Technology Beijing, China
{xxw21, wang-zw18}@mails.tsinghua.edu.cn; d202210361@xs.ustb.edu.cn;

hmliu@ustb.edu.cn; {jzhou, lujiwen}@tsinghua.edu.cn

Abstract

In this paper, we propose a new detection framework for
3D small object detection. Although deep learning-based
3D object detection methods have achieved great success in
recent years, current methods still struggle on small objects
due to weak geometric information. With in-depth study,
we find increasing the spatial resolution of the feature maps
significantly boosts the performance of 3D small object de-
tection. And more interestingly, though the computational
overhead increases dramatically with resolution, the growth
mainly comes from the upsampling operation of the decoder.
Inspired by this, we present a high-resolution multi-level
detector with dynamic spatial pruning named DSPDet3D,
which detects objects from large to small by iterative up-
sampling and meanwhile prunes the spatial representation
of the scene at regions where there is no smaller object to
be detected in higher resolution. As the 3D detector only
needs to predict sparse bounding boxes, pruning a large
amount of uninformative features does not degrade the de-
tection performance but significantly reduces the compu-
tational cost of upsampling. In this way, our DSPDet3D
achieves high accuracy on small object detection while re-
quiring even less memory footprint and inference time. On
ScanNet and TO-SCENE dataset, our method improves the
detection performance of small objects to a new level while
achieving leading inference speed among all mainstream
indoor 3D object detection methods. Code is available at:
https://github.com/xuxw98/DSPDet3D.

1. Introduction
3D object detection is a fundamental scene understand-

ing problem, which aims to detect 3D bounding boxes and
semantic labels from a point cloud of 3D scene. With
the recent advances of deep learning techniques on point
cloud understanding [27, 28, 10, 5], 3D detection methods
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Figure 1. Detection accuracy (mAP@0.25 of all categories) and
speed (FPS) of mainstream 3D object detection methods on TO-
SCENE dataset. Our DSPDet3D shows absolute advantage on 3D
small object detection and provides flexible accuracy-speed trade-
off by simply adjusting the pruning threshold without retraining.

have shown remarkable progress [33, 48, 39, 32]. However,
small object detection still remains a huge challenge for 3D.
In outdoor 3D detection dataset like KITTI [9], we observe
a significant performance gap between cars and pedestrians.
In indoor datasets [6] where the size variance is much larger
(e.g. a bed is 1000x larger than a cup), things are only going
to get worse. We focus on the more challenging indoor 3D
small object detection task where the scenes are crowded
with objects of multiple categories and sizes.

For indoor 3D object detection, although great improve-
ment has been achieved in both speed and accuracy on
furniture-level benchmarks [6, 1, 36], they are still far from
general purpose 3D object detection due to the limited range
of object size they can handle. With the arrival of 3D
small object benchmarks [44, 43, 30] which contain objects
with wider size variance (e.g. from tabletop object like cup
to large furniture like bed), the performance of previous
3D detection methods soon falls behind. This is because
extracting fine-grained representation for a large scene is
too computationally expensive, so current methods aggres-
sively downsamples the 3D features, which harms the rep-
resentation of small objects. More recently, [43] proposes
a tabletop-aware learning strategy to boost the performance
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of 3D small object detection. However, this method relies
on densely sampled points from small objects (about 2000
points per tabletop object, even more than the points of a
furniture), which is infeasible in practical scenarios where
the points from small objects are very sparse. Therefore, di-
rectly detecting small objects from naturally sampled point
clouds is a key problem in 3D object detection.

In this paper, we propose DSPDet3D with dynamic spa-
tial pruning for small object detection. We show using
multi-level FPN-like [16] detection framework and increas-
ing the spatial resolution of the feature maps significantly
boosts the performance of 3D small object detection. Al-
though the additional computational overhead brought by
higher resolution is unaffordable, we find the computa-
tion growth is imbalanced: the increased memory footprint
mainly comes from the huge number of features generated
by the upsampling operation of the detector. As the detector
only needs to predict sparse bounding boxes and the predic-
tion follows a coarse-to-fine manner, there is a large amount
of useless features at regions where there is no object to
be detected in higher resolution. Inspired by this, we con-
struct a high-resolution multi-level 3D detector with sparse
convolution, which detects objects from large to small. To
enable detecting small objects in high resolution with con-
trollable computational cost, we devise a dynamic spatial
pruning (DSP) block to generate object proposals and pre-
dict the locations where smaller objects in higher resolu-
tion are assigned. Upsampling is constrained to these lo-
cations by spatial pruning in a cascaded manner at infer-
ence time, while during training we switch the pruning to
weak mode for context preservation. On the popular Scan-
Net [6] dataset, our method improves the mAP of all cate-
gories by 3% and mAP of small object by 14% compared
with current state-of-the-art. On TO-SCENE [43] dataset
with more tabletop objects, we improve the mAP of all cat-
egories by 8%. Notably, in addition to creating new state-of-
the-art, DSPDet3D achieves leading inference speed among
all mainstream indoor 3D object detection methods.

2. Related Work
Advances in 3D sensors have led to a surge of methods

designed for object detection in a 3D scene. The most rele-
vant works are about indoor 3D object detection with point
clouds. As there is few research on 3D small object detec-
tion at present, we also review the small object detection
methods for 2D images.

3D object detection: Thanks to PointNet and Point-
Net++ [27, 28], deep learning-based 3D detection meth-
ods for point clouds begin to emerge in recent years,
which can be mainly divided into three categories: voting-
based [26, 42, 47, 4, 40], transformer-based [23, 21] and
voxel-based [11, 31, 39, 32] methods. Inspired by 2D
hough voting, VoteNet [26] proposes the first voting-based

3D detector, which aggregates the point features on sur-
faces into object center by 3D voting and predicts bound-
ing boxes from the voted centers. MLCVNet [42] inserts
self-attention [38] module into VoteNet to exploit the spatial
correlation of objects. RBGNet [40] presents a ray-based
grouping method for better feature aggregation. Drawing
on the success of transformer-based detector [2] in 2D do-
main, GroupFree3D [21] and 3DETR [23] adopts trans-
former architecture to extract features and decode the ob-
ject proposals into 3D boxes. As extracting point features
require time-consuming sampling and aggregation opera-
tion, GSDN [11] proposes a fully convolutional detection
network based on sparse convolution [10, 5, 14, 45], which
achieves much faster speed. FCAF3D [31] further improves
the performance of GSDN with a simple anchor-free ar-
chitecture. By modifying suboptimal design in FCAF3D,
TR3D [32] achieves the state-of-the-art performance with
even faster speed. Our method also adopts voxel-based ar-
chitecture considering its efficiency and scalability.

Small object detection: Small object detection [37]
is a challenging problem in 2D vision due to the low-
resolution features. To tackle this, a series of methods
have been proposed, which can be categorized into three
types: (1) small object augmentation and oversampling
methods [13, 19, 49]; (2) scale-aware training and inference
strategy using image pyramids [34, 35, 8, 24]; (3) increasing
the resolution of features or generating high-resolution fea-
tures [15, 16, 3, 41, 7, 46]. However, there are far less works
about 3D small object detection due to the limit of data and
network capability. BackToReality [44] proposes ScanNet-
md40 benchmark which contains small objects and finds
many current methods suffer a lot in small object detection.
TO-SCENE [43] proposes a new dataset and learning strat-
egy for understanding 3D tabletop scenes. Based on these
two benchmarks, we conduct in-depth study on the prob-
lem of 3D small object detection and propose an efficient
framework to achieve both high accuracy and fast inference
speed.

3. Approach
In this section, we describe our DSPDet3D for 3D small

object detection. We first summarize the key factors to im-
prove the performance of 3D small object detection. Then
we show the overall framework of DSPDet3D. Finally we
detail the training process for our dynamic spatial pruning
module.

3.1. Analysis

We first explore the most suitable architecture for de-
tecting objects with large variance of size. Following the
choice of current top-performance 3D detectors [31, 39, 32],
we fix sparse convolutional network (MinkResNet [5]) as
the backbone and study the effects of different decoders on
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Figure 2. The memory footprint distribution of different multi-
level detectors. Layer 4 to Layer 1 refer to upsampling layers
(including detection heads) from coarse to fine. If doubling the
spatial resolution of TR3D, the performance on 3D small object
detection improves from 52.7% to 62.8% while memory footprint
increases dramatically. We find upsampling layers accounts for
most of the costs. DSPDet3D efficiently reduces useless computa-
tion on these layers, achieving both fast speed and high accuracy.

the performance of small object detection. By comparing
two-stage decoder [39] and multi-level FPN-like [16] de-
coder [32], we find the latter achieves better performance
on both accuracy and speed (more detail can be found in
Table 1). This is because the multi-level architecture effi-
ciently utilizes the middle feature maps by detecting objects
of different sizes under different resolution.

However, existing multi-level methods [11, 31, 32] need
to quantize the point clouds of a scene into tiny voxels such
as 1cm for information preservation and then apply aggres-
sive downsampling in backbone to control the computa-
tional cost, which harms the representation of small objects.
Taking TR3D [32] for example, we enhance the features of
small objects by doubling the spatial resolution of the back-
bone features and observe that the performance on small
objects improves from 52.7% to 62.8%, which validates the
importance of increasing spatial resolution for small object
detection. Although the additional computational overhead
brought by higher resolution limits the application of the
model, we find the computation growth is imbalanced. Ac-
cording to Figure 2, the upsampling layers (including detec-
tion heads) account for the most memory footprint and have
larger memory growth ratio than the backbone.

Since the detector only needs to predict sparse bounding
boxes, we assume there is a large amount of useless com-
putation in upsampling layers. For instance, backgrounds
like wall/floor and regions where there is no object to be
detected in higher resolution are less informative and may
not need to be upsampled. As shown in Figure 3, even if
we only upsample the regions which contain objects in the
next level, the detection results in this selectively upsampled
scene is as good as in the fully upsampled scene. Therefore,
if we can remove the useless computation on uninformative
regions during upsampling, the memory footprint and infer-
ence time will be significantly reduced without performance
degradation.

Selectively
Upsample

Fully
Upsample

(B)

(A)

Next level

Figure 3. Previous methods conduct upsampling on the whole
scene (A), which is inefficient and contains much useless com-
putation. To show this, we only upsample the regions where there
are objects in the next level (B) and compare the detection results
on the two upsampled scenes. Green, blue and red boxes indi-
cate ground-truth assigned to the next level, correct predictions
and false positives. We find the detection results in the selectively
upsampled scene is as good as in the fully upsampled scene.

In conclusion, we summarize three key points for design-
ing an effective and efficient 3D detector for small object
detection: (1) multi-level FPN-like architecture; (2) increas-
ing the spatial resolution; (3) removing the useless compu-
tation in upsampling layers.

3.2. Overall Framework

We show the overall framework of DSPDet3D in Fig-
ure 4. A high-resolution backbone is first utilized to extract
feature maps for each level. Then we iteratively apply DSP
block to generate object proposals for current level and se-
lectively upsample the feature map to next level with higher
resolution. Below we describe each part of our approach.

High-resolution backbone: As shown in Figure 2, in-
creasing the resolution of backbone will significantly boost
the performance on 3D small object detection and the mem-
ory footprint growth on backbone itself is acceptable. Moti-
vated by this, we design a high-resolution backbone which
consists of a preencoder and a ResNet34 [12] backbone im-
plemented with 3D sparse convolution [10, 5]. Different
from previous sparse convolution-based methods [11, 31,
32], we remove the max pooling layer to increase the spa-
tial resolution of backbone features. Given an input point
cloud scene, we first quantize it into sparse voxels with 1cm
size and apply one sparse convolution to extract the initial
feature map FB

0 . Then we adopt four residual blocks to suc-
cessively extract the backbone features of different levels:

FB
i+1 = ResBlocki(F

B
i ), i = 0, 1, 2, 3 (1)

where each ResBlock downsamples the feature map with
stride 2.

Decoder with dynamic spatial pruning: The decoder
of DSPDet3D aims to predict bounding boxes for each
level, which consists of four DSP blocks and a shared detec-
tion head at each level. DSP block regards each voxel of the
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Figure 4. Illustration of DSPDet3D. The voxelized point clouds are fed into a high-resolution sparse convolutional backbone, which output
four levels of scene representations. Four dynamic spatial pruning (DSP) blocks are stacked to construct a multi-level FPN-like decoder and
detect objects from coarse to fine. Each DSP block merges the backbone and upsampled features, generates object proposals for detection
and selectively upsamples the feature map by pruning uninformative voxels. During training, we switch the pruning to weak mode for
context preservation. We detail DSP block on the right. Note that the part (a) and (c) of DSP are absent in level 4 and level 1 respectively.

feature map as an object proposal and iteratively upsamples
the feature map to generate object proposals for each level.
By pruning uninformative voxels, the upsampling operation
is constrained to regions where there are smaller objects to
be detected in the following levels. The detection head pre-
dicts box regression and classification score for each pro-
posal. Heads at different levels are expected to predict ob-
jects in different sizes: the higher the level, the larger ob-
jects the head detects. Then predictions from four levels are
fused by 3D NMS as the final output. Below we detail how
DSP block works.

DSP block first merges the backbone feature and the up-
sampled feature from previous DSP block:

FM
i = FB

i
~+FU

i+1, i = 3, 2, 1 (2)

where ~+ is a new operation called partial addition pro-
posed by us. Since the upsampled feature FU

i+1 may not
share the same voxels with FB

i due to spatial pruning, we
constrain the addition to be operated on the voxels of FU

i+1

to keep the spatial sparsity. We detail the design choice
in Section 4. For DSP block in level 4, we directly set
FM
4 = FB

4 . Given the merged feature FM
i , we apply sparse

convolution on each voxel to further aggregate features,
which is then outputted as the object proposals in level i:
FP
i = SparseConv(FM

i ). FP
i is also upsampled to gen-

erate high-resolution feature map for level i − 1 to detect
smaller objects.

As we adopt a high-resolution backbone and the up-
sampling convolution [11] will generate much more voxels
than the corresponding backbone feature map, we should

remove useless computation in upsampling as much as pos-
sible. Motivated by the irregular representation of 3D sparse
tensor, we propose to conduct dynamic pruning on the fea-
ture map, which directly remove voxels that are uninforma-
tive for detecting objects in the following levels. We name
it spatial pruning as it is different from previous pruning
methods conducted on the network parameters [22, 18, 20].
Here we devise a light-weight learnable pruning module to
decide where smaller objects (i.e. objects in level j (j < i))
may appear and prune other locations:

F̄P
i = LP(FP

i , K̂i), K̂i = MLPi(F
M
i ), i = 4, 3, 2 (3)

where K̂i is the keeping mask predicted from FM
i , which

represents the probability of retention for each voxel. Dur-
ing inference, the learnable pruning module LP removes the
voxels with probability lower than τ . Different from zero-
ing out pixels in 2D case, our spatial pruning can reduce
both storage and computation costs as the 3D sparse tensor
only stores valid voxels and sparse convolution only oper-
ates at these locations. Our method is also more flexible
than the zoom-in strategy [8, 24], as we can prune voxels
into any shape while the zoom-in can only crop out a single
rectangle on the image.

Training-time pruning: During training, we do not ap-
ply the learnable pruning module as it damages the struc-
tural information of the scene and makes training difficult
(especially at beginning). Instead, we switch the pruning to
weak mode for context preservation, which will remain the
voxels unless the amount of them is too large. As shown
in Figure 4, the weak pruning module is applied after the
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partial addition in level 3/2/1. For level i, we upsample the
keeping mask ˆKi+1 to the voxels of level i with nearest
neighbor interpolation. Then we sort the interpolated scores
and keepNmax voxels with the highest scores. Other voxels
are pruned as in inference time.

Now we discuss the reason why the pruning module is
applied at different locations during training and inference.
At inference time we aim to reduce the computation of up-
sampling, so the pruning module needs to keep as less vox-
els as possible. By applying pruning after the proposal fea-
tures, we are able to prune more aggressively as only objects
in the following levels need to be considered. While during
training, we aim to preserve geometric information. So we
apply pruning after the upsampling only if the amount of
voxels is too large to conduct following operations.

3.3. Training

Ground-truth bounding boxes are utilized to supervise
the training of DSPDet3D, where the predicted bounding
boxes and keeping masks are involved into the computation
of loss. The overall loss is:

Lall =

4∑
i=1

Lbox
i + λ

4∑
i=2

Lkeep
i (4)

where Lbox
i and Lkeep

i refer to the loss for boxes and keep
mask in level i. To calculate the losses, we first assign
ground-truth bounding boxes to each level according to the
volume, where larger objects are assigned to higher lev-
els. In order to reduce hyperparameters, we set the volume
thresholds based on the sizes of sparse voxels. We define
the voxel size and minimum volume of box in level i as Si

and Vi respectively. Vi can be computed by:

Vi = Nvol · S3
i , Si = 2Si−1, i = 2, 3, 4 (5)

where Nvol is a hyperparameter to control the size. We set
V1 = 0 and V5 = +∞, then box with volume falling into
[Vi, Vi+1) is assigned to level i.

For Lbox, we keep the training of classification and re-
gression as same as in TR3D. For Lkeep, we use Focal-
Loss [17] to supervise K̂i with a generated ground-truthKi:
Ki is a 0-1 mask where 1 indicates the voxels that should
be kept, i.e., the coarse locations of all objects in lower level
j (j < i). As too much kept voxels leads to increasing com-
putational cost while too few results in poor context infor-
mation, the ground-truth should be generated with careful
design. Here we propose to set Ki according to the recep-
tive field of object proposals near ground-truth object cen-
ters. By keeping all voxels in the receptive field of an object
proposal, the prediction from this proposal will not be af-
fected by pruning. Since the upper bound of receptive field
of a voxel expands in shape of cube with sparse convolu-
tion, we utilize a cube range to decide where to set 1 in Ki.

Specifically, we first setKi all to zero. Then for each object
o in level j (j < i), we use its center coj = (xoj , y

o
j , z

o
j ) to

define a cube with side length proportional to the receptive
field and set Ki to 1 in this area:

Ki[x][y][z] = 1, if 2·max{|x−xoj |, |y−yoj |, |z−zoj |} < rSj

(6)
where (x, y, z) is the voxel coordinates of Ki and r is set
according to the size of receptive field.

4. Experiment
In this section, we conduct experiments to investigate the

performance of our approach on 3D small object detection.
We first describe the datasets and experimental settings.
Then we compare DSPDet3D with the state-of-the-art 3D
object detection methods. We also design ablation studies
to show the effectiveness of the proposed methods. Finally
we demonstrate the visualization results of DSPDet3D.

4.1. Experimental Settings

Datasets and metrics: We conduct experiments on two
indoor datasets including ScanNet [6] and TO-SCENE [43].
ScanNet is a richly annotated dataset of indoor scenes with
1201 training scenes and 312 validation scenes. Each ob-
ject in the scenes are annotated with texts and then mapped
to category IDs. We follow the ScanNet-md40 benchmark
proposed by [44], which contains objects in 22 categories
with large size variance. TO-SCENE is a mixed reality
dataset which provides three variants called TO Vanilla,
TO Crowd and TO ScanNet with different numbers of
tabletop objects and scene scales. We choose the room-
scale TO ScanNet benchmark, which contains 3600 train-
ing scenes and 800 validation scenes with 70 categories.
However, TO ScanNet adopts non-uniform sampling to ac-
quire about 2000 points per tabletop object, which is infea-
sible in practical settings. To this end, we downsample the
small objects and control the density of them to be similar
with other objects and backgrounds. We name this modi-
fied version as TO-SCENE-down benchmark. We take the
point clouds without color as inputs for all methods. More
details about ScanNet-md40 and TO-SCENE-down bench-
marks can be found in supplementary material.

We report the mean average precision (mAP) with
threshold 0.25 and 0.5. To measure the performance on
different categories, we use three kinds of metrics: mAP,
mAPS and mAPO, which refer to the mean AP of all ob-
jects, small objects and others respectively. Here we de-
fine categories of small object as ones with average volume
smaller than 0.05m3 for both benchmarks.

Implementation details: We implement our approach
with PyTorch [25] and MinkowskiEngine [5]. We set max
epoch as 12, weight decay as 0.0001 and initial learning
rate as 0.001. We use AdamW with a stepwise scheduler to
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Table 1. 3D objects detection results and computational costs of different methods on ScanNet-md40 benchmark. We report both
mAP@0.25 and mAP@0.5 for mAP, mAPS and mAPO . DSPDet3D with the best pruning threshold is highlighted in gray. Class-specific
results can be found in Table 3 and 4.

Method mAP mAPS mAPO Speed Memory

@0.25 @0.5 @0.25 @0.5 @0.25 @0.5 (FPS) (MB)

VoteNet 51.02 33.69 0.30 0 62.27 41.21 13.4 1150
VoteNetS 48.62 31.55 1.04 0 59.17 38.59 8.5 1500
H3DNet 53.51 39.23 3.08 0.90 64.70 47.65 7.2 1550

GroupFree3D 56.77 41.39 11.7 0.81 66.82 50.42 7.8 1450
GroupFree3DS 29.44 11.94 0.20 0 35.89 14.6 3.2 2000

RBGNet 55.23 32.64 5.81 0 66.18 39.87 6.6 1700
CAGroup3D 60.29 49.90 16.62 8.63 70.01 59.11 3.1 3250

FCAF3D 59.49 48.75 18.38 8.21 68.64 57.80 12.3 850
TR3D 61.59 49.98 27.53 12.91 69.16 58.20 10.8 1250

Ours(τ = 0) 65.25 53.66 44.16 32.20 69.94 58.43 4.2 4200
Ours(τ = 0.3) 64.39 53.07 41.32 29.90 69.52 58.22 12.7 700

optimize the network parameters, which steps at 8 and 11
epoch to reduce the learning rate by a factor of 10. Training
converges within 4 hours on a 4 GPU machine.

The stride of the sparse convolution in the preencoder
of DSPDet3D is set to 2, thus the voxel size of FB

0 is 2cm
and Si equals to 2i· 2cm. We set λ = 0.01, Nvol = 27,
r = 13 and Nmax = 100000 during training. The channel
number of FB

0 and FB
i (i = 1, 2, 3, 4) are set to 64 and 128

respectively. All sparse convolutional layers with stride 1
have kernel size 3, while layers with stride 2 have kernel
size 1 for downsampling and 3 for upsampling. We analyze
the size of receptive field in supplementary material.

4.2. Comparison with State-of-the-art

We compare our method with popular and state-of-the-
art 3D object detection methods, including VoteNet [26],
H3DNet [47], GroupFree3D [21], RBGNet [40], CA-
Group3D [39], FCAF3D [31] and TR3D [32]. We also
follow [43] to reduce the radius of ball query in the Point-
Net++ backbone for VoteNet and GroupFree3D. The modi-
fied models is distinguished by subscript S.

Table 1 shows the experimental results on ScanNet-
md40. Consistent with the observation of [44], we find
point-based (VoteNet, H3DNet, RBGNet) and transformer-
based (GroupFree3D) methods almost fail to detect small
objects. This is because the PointNet++ backbone used
by these methods adopts set abstraction (SA) operation to
downsample the point clouds and extract scene represen-
tation. As SA is computationally heavy if the number of
points is large, in order to process the whole scene, SA
utilizes furthest point sampling to aggressively downsam-
ple the point clouds. Note that the first SA will reduce the
number of points to 4096. This procedure seriously harms
the representation of small object due to: (1) the number

of points are too small to contain small objects; (2) furthest
point sampling has a low probability to sample points on
small objects. As a result, these methods fail to extract ac-
curate representation of small objects and get low mAPS .

For methods (CAGroup3D, FCAF3D, TR3D) with
sparse convolutional backbone, they achieve relatively
much higher mAPS due to sparse convolution [10, 5] can
extract fine-grained scene representation with high effi-
ciency. However, two-stage method like CAGroup3D is
both slow and memory-consuming. It also requires seman-
tic labels as additional supervision to train the network,
which is not a practical setting. Multi-level methods like
FCAF3D and TR3D are efficient and get good performance
on small object detection due to the FPN-like architecture,
but they are still limited by resolution. On the contrary, our
DSPDet3D with a threshold τ = 0.3 take advantage of the
high-resolution scene representation to achieve 64.4/53.1
in terms of mAP and 41.3/29.9 in terms of mAPS , which
is +2.8/3.1 and +13.8/17.0 better than the state-of-the-art.
Furthermore, DSPDet3D is the most memory-efficient and
the second fastest model (only 0.7 FPS slower than the sim-
ple VoteNet) among all mainstream methods.

The comparison on TO-SCENE-down is shown in Table
2. As there are much more tabletop objects than in ScanNet,
the performance on small objects are overall higher. Simi-
larly, methods with sparse convolution backbone performs
much better than ones with PointNet++ backbone. Our
DSPDet3D with a threshold τ = 0.5 achieves 63.3/55.4
in terms of mAP and 61.7/55.4 in terms of mAPS , which
is +7.7/9.4 and +9.0/11.4 better than the state-of-the-art.
DSPDet3D also achieves the fastest inference speed and
lowest memory footprint among all methods.
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Table 2. 3D objects detection results and computational costs of different methods on TO-SCENE-down benchmark. We report both
mAP@0.25 and mAP@0.5 for mAP, mAPS and mAPO . DSPDet3D with the best pruning threshold is highlighted in gray. Class-specific
results can be found in Table 5 and 6.

Method mAP mAPS mAPO Speed Memory

@0.25 @0.5 @0.25 @0.5 @0.25 @0.5 (FPS) (MB)

VoteNet 26.72 14.01 14.51 4.78 61.94 40.65 12.8 1300
VoteNetS 31.87 14.89 21.75 7.40 61.08 36.57 7.6 1650
H3DNet 27.69 17.38 14.83 7.39 64.97 46.23 5.1 1650

GroupFree3D 32.41 20.43 20.17 10.13 67.64 50.18 7.7 1700
GroupFree3DS 40.14 23.55 33.33 16.15 59.74 44.91 2.4 2200

RBGNet 40.42 30.27 29.69 21.61 71.39 55.28 5.0 1850
CAGroup3D 54.28 47.58 48.49 43.85 70.98 58.35 2.2 3500

FCAF3D 45.13 37.21 37.18 31.65 67.92 53.22 11.9 1000
TR3D 55.58 45.95 52.72 44.01 63.98 51.56 9.9 1400

Ours(τ = 0) 63.67 55.71 62.05 55.72 68.34 55.69 4.1 5300
Ours(τ = 0.5) 63.26 55.38 61.73 55.44 67.69 55.21 13.9 600
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Figure 5. Ablation stduies on partial addition, structure of DSP
block, ground-truth generation and hyperparameters on ScanNet.

4.3. Ablation Study

We conduct ablation studies on ScanNet-md40 to study
different design choices. We report mAP@0.25 and FPS at
different threshold τ .

Partial additon: For partial addition FM
i = FB

i
~+FU

i+1,
we add the features on the shared voxels of FB

i and FU
i+1,

and directly use the original features on voxels unique to
FU
i+1. We compare this design with: (A) interpolate FB

i

to the voxels of FU
i+1, then apply normal addition; (B) di-

rectly adding FB
i and FU

i+1 by taking union of them. As
shown in Figure 5 (upper left), strategy B gets the worst
speed-accuracy tradeoff. This is because the voxels of FB

i

make up for the pruned voxels of FU
i+1, which results in

huge computational costs due to the large amount of high-
resolution features. Our strategy also outperforms strategy
A by a remarkable margin, which indicates the simple ’add
and ignore’ operation is effective.

OursGround-truth
Figure 6. Visualization results of 3D object detection on ScanNet.
Red boxes highlight our performance on detecting small objects.

Block structure: In our learnable pruning module, the
keeping mask is predicted from FM

i . We compare this de-
sign with three variants: (A) predict keeping mask from
FP
i ; (B) add the predictor for keeping mask to the shared

detection head, parallel with the classification and regres-
sion branch; (C) similar to B but do not share the predictor
across levels. Figure 5 (upper right) shows that our design
achieves the best speed-accuracy tradeoff. We think this is
because the optimization objectives of the learnable pruning
module and detection head is different: the pruning module
aims to predict where objects from lower levels may appear,
while the detection head aims to predict where are objects
at current level. Our design does not rely on the proposal
features and thus decouples the two optimization problems.

Ground-truth generation: We compare our ground-
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Figure 7. Visualization of pruning process on ScanNet. We show the kept voxels in each level under different thresholds. The memory
footprint of each level is also listed at bottom.

truth generation approach in (6) for with three variants: (A)
replace the Sj in (6) with Si−1, which is a fixed range for
objects in different level; (B) replace the max{|x−xoj |, |y−
yoj |, |z − zoj |} in (6) with ||(x, y, z) − coj ||2, which changes
the cube range to its inscribed ball; (C) combine A and B.
As shown in Figure 5 (bottom left), using cube range is bet-
ter than sphere range as cube better represents the shape
of receptive field. Setting the side length proportional to the
voxel size of current level achieves higher performance than
a fixed length, which indicates a more precise Ki is better
for training DSPDet3D.

Hyperparameters: We further study the effects ofNvol.
We compare 27 with 18 (A) and 36 (B) in Figure 5 (bottom
right). It is observed that an inappropriate Nvol leads to
imbalanced assignment of ground-truth bounding boxes to
each level, which degrades the performance.

4.4. Visualization Results

We show visualization of the detection results and prun-
ing process with detailed memory footprint distribution on
ScanNet-md40 to further understand DSPDet3D.

Detection: We compare the predictions of DSPDet3D
after NMS with the ground-truth bounding boxes in Figure
6. It can be seen that DSPDet3D produces accurate detec-
tion results with few false positives and successively detects
small objects like cups and laptops, as shown in the red box.

Pruning: We visualize the pruning process under differ-
ent thresholds in Figure 7, where the voxels in each level
after pruning are shown. We also list the memory footprint
of each level. It can be seen that our method significantly
reduce the memory footprint by pruning most of the unin-
formative voxels. Our pruning module only keeps regions
where there are smaller objects than current level. With the
increase of τ , DSP block prunes the voxels more and more
aggressively with larger reduction on memory footprint.

5. Conclusion

In this paper, we have presented a new detection frame-
work for 3D small object detection. With in-depth analysis,
we summarize three key points for designing an effective
and effective 3D detector for small object detection: (1)
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multi-level FPN-like architecture; (2) increasing the over-
all spatial resolution of feature maps; (3) removing useless
computation during upsampling operation. To this end, we
propose DSPDet3D, a high-resolution multi-level 3D detec-
tor with sparse convolution. To detect small objects in high
resolution with controllable computational cost, we devise
a dynamic spatial pruning (DSP) block to generate object
proposals from large to small and selectively upsample the
feature map at regions where there are smaller objects to be
detected in higher resolution. Upsampling is constrained to
these regions by spatial pruning in a cascaded manner at in-
ference time, while during training we switch the pruning
to weak mode for context preservation. Extensive experi-
ments on ScanNet and TO-SCENE datasets show that our
DSPDet3D achieves leading detection accuracy and speed.

Supplementary Material

This supplementary material is organized as follows:

• Section A presents the analysis on the size of receptive
field and the choice of r.

• Section B details the ScanNet-md40 and TO-SCENE-
down benchmarks.

• Section C details the experimental results with per-
category APs.

• Section D provides additional experimental results on
ScanNet200 benchmark.

A. Analysis on Receptive Field

Usually the receptive field refers to the range of pixels
that the feature corresponds to in the original image. Here
we define receptive field as the range of voxels that object
proposal in level i − 1 corresponds to in F̄P

i , which rep-
resents how many voxels will participate in the prediction
of a bounding box. For each ground-truth center, we define
the closest 27 voxels as the nearby object proposals and aim
to keep the voxels in the receptive fields of these proposals
unpruned. Below we first analyze the size of receptive field,
and then we conduct ablation study to find out the optimal
value of r.

Analysis: We expect the pruned feature map F̄P
i to keep

the context information for objects in level i − 1. Here we
assume the voxels are dense to derive the upper bound of the
receptive field. From F̄P

i to the predicted bounding boxes
in level i− 1, there are three sparse convolution with kernel
size 3 (an upsampling convolution and two normal convolu-
tion) and one with kernel size 1, which results in receptive
field with a maximum size of 9 × 9 × 9 for the 27 closest
object proposals to the ground-truth center as shown in Fig-
ure 8. Therefore, r should be set close to 9. Considering
the optimization of learnable pruning module may not be so

(A) (B)

(C)(D)

Figure 8. Illustration of the expanding of receptive field. We show
the process in 2D for clear visualization. A, B, C and D refer
to F̄P

i , FM
i−1, FP

i−1 and object proposal features after convolution
in the detection head respectively. Yellow voxels refer to the 27
closest object proposals to the ground-truth object center.
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Figure 9. Ablation study on the value of r.

perfect, we conduct ablation studies below to find out the
optimal r.

Experiments: We train DSPDet3D with different r
close to 9. We select seven values: {5, 7, 9, 11, 13, 15, 17}.
For each of them, we train DSPDet3D 5 times and select the
best model. As shown in Figure 9, setting r = 9 leads to
a high performance, which validates our theoretical anal-
ysis. We empirically find r = 13 works slightly better,
which may due to better optimization of the learnable prun-
ing module. We set r = 13 for all other experiments.

B. Details on Benchmarks
We demonstrate the detailed categories and the number

of objects in each class for both benchmarks in Figure 10.
We observe significant long tail effect in both benchmarks
and find that the number of small objects in the real world
dataset (i.e. ScanNet) is usually small, which poses great
challenge to the 3D object detector.
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Figure 10. Number of objects in each category for ScanNet-md40 and TO-SCENE-down. For each category, we report the total number of
objects on training and validation sets and use red and blue bars to distinguish the numbers on each set.

After
Downsampling

Before
Downsampling

Figure 11. Visualization of scenes in TO-SCENE before (origi-
nally provided in [43]) and after (our TO-SCENE-down bench-
mark) downsampling. After downsampling, the density of points
on small objects is closer to others, which is more realistic.

In order to prove the necessity of downsampling for
small objects in TO-SCENE-down, we further visualize the
scenes in TO-SCENE before and after downsampling in
Figure 11. It can be seen that the original dataset [43]
contains densely and non-uniformly sampled small objects,

whose density is obviously much larger than other objects
and backgrounds. While after our downsampling, the over-
all scenes are closer to naturally sampled real scenes.

C. Class-specific Results
We provide more detailed experimental results on

ScanNet-md40 and TO-SCENE-down with class-specific
APs. Table 3, 4, 5 and 6 refer to AP@0.25 on ScanNet-
md40, AP@0.5 on ScanNet-md40, AP@0.25 on TO-
SCENE-down and AP@0.5 on TO-SCENE-down respec-
tively. We highlight the categories of small objects in blue.
It can be seen that DSPDet3D achieves much better perfor-
mance on small objects compared with the state-of-the-arts.

D. 3D Object Detection on More Categories
We further conduct experiments on the recent Scan-

Net200 [30] benchmark, which shares the same scenes with
ScanNet-md40 but has more categories (198 for object de-
tection and instance segmentation). Note that total number
of objects in some tail categories is even less than 10, which
makes this benchmark extremely challenging without using
the text embedding of CLIP [29] to assist training. We com-
pare DSPDet3D with FCAF3D [31] and TR3D [32] under
the same metric as in the main paper. As shown in Figure
7, DSPDet3D achieves the highest detection accuracy on
all metrics, as well as the fastest speed and lowest memory
footprint, which further validates the effectiveness of our
approach.
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Table 3. The class-specific detection results (AP@0.25) of different methods on ScanNet-md40 benchmark. We highlight the categories of
small objects in blue.
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Bathtub 90.39 84.26 91.46 92.70 71.36 44.22 44.69 83.65 93.93 83.13 83.16
Bed 87.30 89.03 88.46 89.11 71.58 90.74 87.74 86.91 87.64 88.78 88.80

Bench 48.34 40.56 46.89 38.20 10.01 47.79 42.09 39.20 53.05 55.32 55.50
Bookshelf 55.47 54.43 59.88 58.90 20.97 61.86 69.09 65.88 66.17 63.97 64.10

Bottle 0.00 0.06 1.22 4.16 0.00 0.20 5.56 2.98 3.23 28.23 17.27
Chair 89.03 89.15 91.70 93.20 56.76 94.16 95.04 94.96 95.58 95.99 95.58
Cup 0.00 0.00 0.00 4.37 0.01 0.00 0.00 5.85 12.95 26.91 27.58

Curtain 56.69 59.17 67.00 70.31 27.31 62.81 72.45 68.00 62.54 65.80 66.00
Desk 68.81 60.05 76.48 75.13 40.43 76.83 79.21 74.94 74.27 72.69 72.71
Door 53.17 48.57 59.45 61.62 16.70 59.55 61.78 60.26 60.91 64.65 64.79

Dresser 32.63 38.88 34.70 48.60 28.88 40.23 60.42 31.62 40.82 33.96 31.33
Keyboard 0.03 0.19 0.09 3.19 0.00 0.00 22.37 27.96 46.58 49.61 49.33

Lamp 49.26 43.29 49.33 59.05 8.76 56.90 61.19 61.00 61.32 68.79 68.01
Laptop 1.17 3.91 11.09 19.10 0.81 23.11 38.45 36.95 47.31 71.87 71.10
Monitor 67.18 68.76 74.88 83.35 30.12 83.63 86.93 88.71 89.20 90.78 89.81

Night Stand 81.35 78.26 86.12 83.77 56.51 80.86 91.62 90.39 91.44 94.00 92.17
Plant 29.36 18.08 29.45 21.71 4.24 50.47 59.87 43.29 35.78 59.01 57.16
Sofa 88.89 87.33 89.09 84.79 53.99 91.32 91.41 88.38 91.32 90.98 90.99
Stool 44.34 37.72 37.63 44.54 17.66 51.41 55.25 52.51 42.65 51.88 52.23
Table 64.35 60.42 65.69 74.31 32.61 74.41 70.37 71.47 69.99 68.89 68.62
Toilet 94.01 95.48 97.89 95.82 82.95 97.76 99.73 99.39 98.81 98.91 99.11

Wardrobe 20.67 12.04 18.72 43.01 16.02 26.80 31.12 34.48 29.49 11.30 11.33

Table 4. The class-specific detection results (AP@0.5) of different methods on ScanNet-md40 benchmark. We highlight the categories of
small objects in blue.
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Bathtub 79.13 84.26 86.16 85.47 44.68 39.46 42.97 83.65 84.21 76.72 76.73

Bed 82.43 80.35 82.69 81.85 42.71 78.17 81.93 80.91 82.32 83.84 83.84
Bench 1.63 4.57 22.45 2.36 0.51 1.53 14.50 27.95 34.15 31.71 31.79

Bookshelf 34.16 29.23 43.99 44.51 4.07 44.06 55.92 56.06 54.22 54.39 54.48
Bottle 0.00 0.00 0.00 0.08 0.00 0.00 1.44 0.48 1.50 17.91 11.57
Chair 74.22 69.87 80.52 83.41 14.31 82.33 90.19 89.98 91.13 92.06 91.59
Cup 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.69 5.98 24.22 24.89

Curtain 19.27 17.46 30.86 44.91 1.16 15.56 44.52 43.62 34.97 36.39 36.49
Desk 36.27 32.54 49.13 47.80 10.95 45.39 60.25 54.36 58.66 57.72 57.74
Door 22.37 18.54 32.57 38.00 2.05 34.14 46.36 42.34 43.72 45.43 45.38

Dresser 22.24 23.72 26.66 35.84 4.80 24.53 47.19 25.14 35.14 28.10 25.58
Keyboard 0.00 0.00 0.00 0.84 0.00 0.00 5.40 2.89 13.36 33.51 33.50

Lamp 21.95 11.31 28.96 35.29 0.08 26.10 53.80 47.10 42.60 56.50 55.74
Laptop 0.00 0.04 3.60 2.30 0.00 0.00 27.37 26.77 29.47 53.16 49.62
Monitor 28.18 24.70 35.05 42.82 2.01 30.24 68.77 66.31 74.31 76.31 75.51

Night Stand 70.94 59.96 78.42 71.77 31.82 71.30 91.62 83.49 89.86 84.76 86.78
Plant 11.59 9.82 20.37 13.21 0.44 26.55 52.90 35.56 30.17 39.25 37.53
Sofa 72.68 76.60 74.89 70.23 24.38 67.25 83.29 78.04 78.14 82.23 82.23
Stool 28.24 21.08 25.53 40.49 7.10 15.68 51.59 47.54 40.50 46.90 47.34
Table 48.72 39.26 47.40 59.83 9.22 38.50 61.56 59.82 60.41 58.70 58.54
Toilet 81.74 86.43 85.06 89.99 61.14 75.64 96.08 95.72 87.51 91.74 91.88

Wardrobe 5.42 4.36 8.75 19.58 1.25 1.65 20.15 22.08 27.23 8.97 8.79
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Table 5. The class-specific detection results (AP@0.25) of different methods on To-Scene benchmark. We highlight the categories of small
objects in blue.
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Cabinet 53.34 49.72 58.94 61.90 57.12 65.36 66.65 63.93 61.56 66.71 65.67
Bed 84.96 82.54 80.13 82.13 80.25 92.11 84.66 80.93 78.29 73.02 73.00

Chair 87.79 85.54 89.54 92.55 88.29 92.57 94.20 92.70 94.14 94.01 93.88
Sofa 92.00 89.87 87.43 91.32 86.33 88.96 86.99 89.75 90.65 90.38 90.44
Table 67.19 64.44 68.24 74.24 69.97 86.21 73.25 75.72 79.42 79.43 79.26
Door 51.39 52.88 53.85 60.60 53.62 59.99 59.99 50.37 55.88 58.77 58.23

Window 41.05 43.40 44.87 48.21 41.62 58.83 53.19 46.33 43.79 43.66 43.03
Bookshelf 29.69 24.08 30.24 28.43 27.74 27.52 26.29 21.24 29.02 30.71 31.07

Picture 6.60 6.78 8.26 11.73 8.28 28.63 26.59 14.04 11.80 27.39 18.73
Counter 56.73 51.35 63.49 62.73 63.39 71.11 71.83 67.90 63.98 60.24 60.32

Desk 59.65 57.20 56.39 59.23 49.80 64.55 64.29 63.38 59.20 61.75 61.78
Curtain 48.39 46.38 54.85 54.23 56.41 37.68 65.68 54.77 43.18 48.83 50.05

Refrigerator 49.68 54.76 69.77 65.12 41.31 67.51 74.50 75.35 65.85 77.05 77.16
Showercurtrain 75.65 78.95 75.76 78.47 81.55 83.46 79.70 78.48 39.93 60.84 59.27

Toilet 99.73 99.98 100.00 100.00 100.00 100.00 99.58 100.00 100.00 100.00 100.00
Sink 66.61 73.02 85.24 85.41 84.65 84.52 85.49 90.04 92.18 90.91 90.58

Bathtub 95.80 95.42 95.74 95.91 96.26 94.54 96.02 93.14 94.80 96.30 96.30
Garbagebin 51.42 49.21 56.03 68.63 58.57 68.96 69.86 68.51 66.30 70.17 69.75

Bag 39.22 49.08 44.83 60.35 69.97 73.75 89.27 83.63 89.28 92.49 91.80
Bottle 15.00 30.67 20.20 33.24 53.09 58.26 69.44 35.88 70.83 82.95 82.70
Bowl 11.79 23.27 8.72 12.58 44.17 39.89 85.21 55.08 73.95 93.30 93.36

Camera 7.88 15.57 9.40 6.91 24.00 13.06 53.30 44.11 62.24 74.15 74.65
Can 12.40 22.05 14.65 26.08 41.43 45.35 76.29 42.40 76.81 90.01 90.36
Cap 19.46 46.49 15.53 34.34 60.86 45.89 84.58 67.04 82.38 86.55 86.65

Clock 1.29 1.87 0.94 3.56 5.42 14.13 11.30 2.65 26.69 38.04 37.48
Keyboard 0.14 14.35 3.05 5.20 26.71 0.86 56.43 38.04 76.35 83.47 83.04
Display 53.27 47.56 54.15 46.78 66.93 81.61 88.27 86.55 87.09 89.26 89.33

Earphone 8.94 28.85 6.06 17.31 46.37 27.75 73.42 56.00 75.10 75.07 75.16
Jar 5.31 29.54 6.75 7.75 28.42 25.47 34.58 25.63 23.92 31.25 30.47

Knife 0.63 0.00 0.18 1.72 1.26 1.26 0.00 0.24 16.52 17.06 14.57
Lamp 34.45 53.44 41.38 58.99 67.95 72.67 89.10 78.45 83.13 90.33 89.80
Laptop 65.25 66.98 67.75 82.17 94.18 88.77 96.86 95.94 96.83 97.02 97.02

Microphone 0.04 0.00 0.01 0.01 0.04 0.16 0.00 0.16 0.96 1.29 1.30
Microwave 50.07 52.79 50.18 54.93 52.49 63.78 82.98 78.13 69.59 83.90 83.71

Mug 13.90 29.48 15.80 24.09 48.59 39.16 85.77 53.40 78.14 93.68 93.55
Printer 27.09 22.25 42.07 43.61 35.57 54.19 65.72 68.49 66.63 66.69 64.18

Remote Control 0.36 2.33 0.22 0.32 2.00 2.68 12.38 1.68 34.58 34.28 34.63
Phone 1.52 6.22 1.61 2.89 15.96 14.54 29.13 9.97 66.23 79.31 79.02
Alarm 3.07 12.11 3.56 9.51 19.04 13.44 39.08 20.60 30.59 48.68 49.06
Book 20.37 31.58 27.02 31.09 38.88 33.74 57.75 34.95 63.88 73.52 73.50
Cake 20.69 27.18 22.09 27.41 38.48 31.28 64.14 56.94 54.51 65.84 63.82

Calculator 1.51 6.34 1.99 2.88 13.71 11.74 21.56 16.73 34.34 43.94 44.05
Candle 28.00 29.63 21.62 42.58 49.31 53.19 56.87 41.87 65.45 64.62 66.25
Charger 0.03 2.12 0.33 0.53 1.78 8.09 22.22 6.33 37.47 55.25 55.54

Chessboard 6.80 45.14 19.33 27.38 74.76 71.96 87.45 78.31 77.94 86.30 86.36
Coffee Machine 41.21 27.28 32.04 34.88 47.09 53.52 77.94 62.97 38.69 54.37 51.13

Comb 0.30 1.21 0.12 1.67 6.28 4.82 11.05 2.44 23.96 52.58 51.92
Cutting Board 10.57 8.29 14.22 17.90 38.76 30.21 0.00 32.18 65.59 67.24 67.81

Dishes 11.25 26.30 9.16 21.03 40.12 26.11 70.50 42.89 64.15 63.34 62.01
Doll 1.14 1.89 0.70 7.24 17.74 2.12 9.55 1.68 14.54 18.80 18.55

Eraser 0.00 0.04 0.00 0.00 0.00 0.55 0.00 0.29 34.87 57.26 57.59
Eye Glasses 5.67 23.20 7.84 12.57 40.69 31.52 81.29 58.37 91.95 96.94 96.90

File Box 56.97 49.39 33.74 40.07 45.78 55.42 63.47 60.84 67.27 66.79 67.21
Fork 0.84 0.61 1.76 1.31 1.86 1.49 6.52 6.84 17.14 29.20 28.83
Fruit 2.56 9.54 2.15 7.53 29.77 20.58 62.04 32.09 52.27 80.58 80.58
Globe 30.87 29.41 19.91 39.84 52.62 35.67 75.65 64.64 65.02 79.33 78.79
Hat 1.87 22.49 2.95 4.18 13.18 6.83 53.65 23.64 32.08 50.39 50.90

Mirror 0.70 17.36 0.76 0.20 0.54 5.63 0.58 28.93 1.30 4.60 4.47
Notebook 3.90 8.12 8.52 8.33 23.19 26.65 37.44 17.61 59.38 65.24 65.25

Pencil 0.01 1.14 0.08 0.06 1.00 1.51 0.00 3.47 32.09 57.18 56.56
Plant 31.59 49.74 35.44 53.65 65.60 60.77 87.03 73.41 78.99 88.87 88.64
Plate 5.31 20.83 7.71 10.31 27.52 38.64 60.91 19.40 80.18 96.00 95.99
Radio 1.95 5.50 5.59 3.13 6.80 12.77 15.56 10.42 18.59 19.46 15.77
Ruler 0.02 1.25 0.42 0.13 1.68 0.96 3.99 1.09 35.56 53.27 55.83

Saucepan 31.34 32.74 24.73 39.52 47.05 37.65 73.89 37.29 30.28 62.53 60.70
Spoon 0.05 1.76 1.19 0.65 4.04 5.97 9.89 2.90 27.35 34.45 33.37

Tea Pot 21.10 28.32 17.05 33.06 48.87 42.51 89.43 76.64 77.67 86.34 86.51
Toaster 13.88 21.95 19.51 11.42 16.27 19.90 34.61 31.32 29.11 30.89 31.88

Vase 25.95 37.29 17.00 31.59 46.84 37.72 65.79 52.50 54.39 65.82 65.52
Vegetables 0.43 7.12 0.40 0.66 18.35 10.27 0.01 4.73 9.62 6.89 6.56

12



Table 6. The class-specific detection results (AP@0.5) of different methods on To-Scene benchmark. We highlight the categories of small
objects in blue.
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Cabinet 19.75 18.39 25.36 34.62 25.64 40.75 48.45 36.36 37.93 42.84 40.85
Bed 73.12 76.46 78.68 74.08 71.35 90.37 74.66 75.89 67.55 65.49 65.47

Chair 71.68 66.72 79.05 84.35 77.56 85.99 90.35 87.31 89.64 88.92 88.83
Sofa 86.54 82.29 84.88 86.89 79.51 83.64 81.79 88.81 90.65 88.51 88.57
Table 51.04 47.21 58.03 66.25 59.27 76.61 69.99 71.10 72.52 73.44 73.24
Door 25.72 24.80 33.47 43.78 33.32 41.23 49.61 39.67 42.73 45.24 44.91

Window 18.49 188.00 20.23 22.56 18.05 34.76 31.92 24.36 24.19 23.15 23.76
Bookshelf 22.22 14.42 15.49 12.83 16.29 20.03 22.90 10.33 22.22 25.68 26.02

Picture 0.69 0.35 1.75 6.88 3.42 13.88 13.48 5.12 3.50 18.32 11.81
Counter 18.08 9.07 17.45 37.21 31.22 40.43 49.28 43.81 40.71 27.83 27.89

Desk 35.78 26.70 35.47 45.83 37.67 45.68 37.99 42.25 42.13 42.67 42.67
Curtain 11.85 13.01 6.57 15.00 19.05 12.10 19.58 10.60 15.42 26.07 26.67

Refrigerator 38.74 33.15 47.15 27.88 21.22 53.58 64.15 54.13 50.53 65.77 65.84
Showercurtrain 41.76 41.14 70.98 71.58 40.11 78.05 68.52 72.77 30.12 52.50 48.45

Toilet 92.55 92.28 100.00 100.00 100.00 100.00 99.58 100.00 100.00 100.00 100.00
Sink 19.97 22.51 38.04 43.85 42.29 40.28 51.54 46.37 55.16 63.02 65.59

Bathtub 72.46 81.61 79.25 80.75 80.94 81.01 81.27 88.77 85.38 92.09 92.09
Garbagebin 27.98 23.46 40.25 50.67 41.58 56.65 64.57 60.39 57.68 62.95 62.04

Bag 12.48 18.08 20.08 26.86 41.31 57.46 82.31 75.13 81.16 88.94 88.06
Bottle 3.35 7.77 6.43 8.22 13.78 43.00 66.27 27.81 65.95 80.86 80.60
Bowl 0.81 5.34 0.50 0.49 12.83 19.49 82.56 52.06 68.56 93.30 93.36

Camera 2.19 2.05 3.38 1.52 10.81 8.98 49.93 35.38 57.19 71.84 72.28
Can 2.06 3.50 3.60 5.47 10.44 36.19 73.51 31.74 68.29 87.36 87.47
Cap 1.69 16.38 6.49 10.87 33.43 37.72 80.34 64.26 82.36 86.53 86.64

Clock 0.00 0.19 0.00 2.73 0.40 8.94 8.68 0.97 14.65 31.75 30.99
Keyboard 0.00 7.46 0.00 1.07 2.21 0.46 46.01 18.12 51.17 72.51 73.51
Display 11.84 12.10 26.07 31.46 28.19 51.38 82.24 77.47 80.11 85.47 85.40

Earphone 2.59 6.62 0.92 4.52 22.85 20.82 3370.73 49.99 71.87 72.29 72.33
Jar 2.10 13.77 2.96 2.29 21.22 22.42 33.81 21.27 22.18 31.25 30.47

Knife 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.40 7.34 6.33
Lamp 13.97 27.06 25.67 43.75 52.96 62.17 89.10 73.67 80.54 90.33 89.80
Laptop 24.34 17.31 42.20 52.85 81.32 75.85 94.51 91.86 94.32 95.63 95.63

Microphone 0.00 0.00 0.00 0.01 0.01 0.06 0.00 0.02 0.96 0.64 0.65
Microwave 16.18 25.78 36.97 41.91 47.12 54.50 82.98 77.52 66.45 83.90 83.71

Mug 2.60 7.84 4.74 5.00 13.03 27.83 83.00 42.79 73.64 92.15 92.15
Printer 10.56 6.99 26.64 32.36 26.62 45.87 65.05 66.80 61.81 66.69 64.18

Remote Control 0.00 0.33 0.01 0.00 0.00 0.19 1.66 0.85 21.92 25.11 24.82
Phone 0.04 0.39 0.02 0.09 0.50 1.95 18.86 4.90 34.50 59.05 58.48
Alarm 0.49 4.37 0.85 2.44 6.84 7.79 35.16 17.02 26.70 44.66 45.66
Book 3.91 5.70 6.59 5.72 8.87 19.42 54.52 30.53 57.04 72.31 72.29
Cake 15.39 15.40 20.09 23.34 33.24 30.27 61.54 56.42 53.17 64.14 62.11

Calculator 0.02 0.19 0.68 0.05 0.61 2.56 16.88 10.28 27.70 40.04 40.20
Candle 11.18 10.59 11.51 18.20 17.60 36.10 53.74 36.69 26.06 61.50 62.89
Charger 0.01 0.01 0.07 0.00 0.01 0.71 10.35 0.90 12.03 33.55 33.22

Chessboard 0.00 3.19 0.11 8.91 36.56 45.26 78.72 62.71 67.45 76.07 76.31
Coffee Machine 11.13 20.39 20.38 18.43 34.55 53.51 77.56 57.93 38.69 54.37 51.13

Comb 0.00 0.00 0.00 0.04 0.08 0.01 5.77 0.03 2.13 38.05 39.29
Cutting Board 2.79 0.69 2.19 4.57 19.23 15.97 0.00 27.23 54.40 51.02 51.30

Dishes 1.30 2.28 1.73 5.15 10.01 15.77 65.85 29.00 61.69 63.28 62.01
Doll 0.14 1.01 0.00 6.84 5.52 2.06 9.12 1.44 14.48 18.75 18.50

Eraser 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.29 20.42 19.18
Eye Glasses 0.15 1.78 0.65 0.48 2.96 9.69 72.73 37.83 77.15 90.26 90.17

File Box 15.22 15.48 23.51 26.95 35.66 53.42 63.36 62.91 66.86 66.79 67.21
Fork 0.00 0.00 0.00 0.00 0.17 0.00 0.05 0.00 2.98 11.84 10.65
Fruit 0.77 0.88 0.41 1.82 7.11 11.44 58.14 22.36 42.00 77.24 77.45
Globe 25.48 25.42 16.80 37.32 49.97 32.95 75.62 64.77 64.98 79.33 78.79
Hat 0.04 13.90 2.46 1.66 3.41 6.23 46.89 24.34 32.08 50.39 50.90

Mirror 0.13 16.71 0.03 0.00 0.00 0.90 0.47 3.76 0.97 4.60 4.38
Notebook 0.31 0.95 1.19 0.41 2.04 6.87 24.77 7.09 45.73 52.30 52.13

Pencil 0.00 0.03 0.00 0.00 0.02 0.03 0.00 0.21 7.83 30.62 29.91
Plant 12.55 25.19 24.01 39.13 49.13 52.49 84.15 66.91 75.74 87.27 87.05
Plate 0.36 0.69 0.41 0.87 1.61 16.54 38.90 18.06 74.66 86.40 86.38
Radio 0.07 0.13 2.14 0.02 1.85 3.39 4.81 3.18 11.42 9.10 9.72
Ruler 0.00 0.06 0.00 0.00 0.00 0.00 0.17 0.07 8.07 17.79 20.61

Saucepan 21.64 16.14 11.19 26.24 17.81 31.15 73.49 30.25 24.75 62.53 60.70
Spoon 0.00 0.00 0.00 0.00 0.10 0.20 0.56 1.21 5.45 20.12 17.88

Tea Pot 7.03 12.42 9.29 21.50 31.24 34.85 87.60 73.44 76.46 85.68 85.87
Toaster 2.18 6.18 10.51 5.12 4.86 15.79 32.65 26.29 27.72 30.34 31.21

Vase 7.43 17.93 11.02 19.63 36.39 33.34 64.57 52.35 52.75 64.76 64.46
Vegetables 0.00 0.18 0.13 0.20 4.91 9.75 0.01 5.00 9.62 6.89 6.54

Table 7. 3D objects detection results and computational costs of different methods on ScanNet200 benchmark. We report both mAP@0.25
and mAP@0.5 for mAP, mAPS and mAPO . DSPDet3D with the best pruning threshold is highlighted in gray.

Method mAP mAPS mAPO Speed Memory

@0.25 @0.5 @0.25 @0.5 @0.25 @0.5 (FPS) (MB)

FCAF3D 28.74 21.81 17.34 10.85 33.45 26.36 8.1 1200
TR3D 30.18 22.58 21.08 10.85 33.72 26.42 7.2 2200

Ours(τ = 0) 33.39 25.94 23.68 18.59 37.41 28.98 3.6 7600
Ours(τ = 0.4) 32.74 25.37 22.47 18.43 36.57 28.25 8.6 900
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