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Motivation
n The annotation time for 3D object detection is a huge obstacle preventing 

its practical application. Compared to 2D counterpart,  labeling a bounding 
box for 3D point cloud is takes much more time (more than 100s per 
object). Considering time-accuracy tradeoff, position-level weakly-
supervised method is a promising topic.

n To fully exploit the information contained in the position-level annotations, 
we consider them as the coarse layout of scenes and convert them into 
virtual scenes with the guide of synthetic 3D shapes for better supervision 
on object detection task.

Approach
n The framework of BackToReality:

Experiments
n Visualization for virtual scenes:

n 3D object detection results:

n Ablation Study:
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Figure 3. The pipeline of our four-stage scene generation method. From (a) to (d), the virtual scene becomes more and more realistic.
We first process the shape dataset and choose proper object templates to construct the initial scene. Next we apply gravity and collision
constrains in turn, which makes the virtual scene physically sound. Finally we control the densities of object templates to be closer to make
the virtual scenes more realistic.

Next we traverse the initial positions to generate gravity-
aware positions. Note that we only need to change z
and SSH in the position dictionary. For supporters and
standers, we directly align their bottoms with the ground
(i.e. the XY plane). For a supportee, if its (x, y) fall in any
supporter’s MER, we assign it to the nearest supporter and
align its bottoms with the supporting surface. Otherwise, it
is aligned to the ground.

In order to avoid overlapping, we need to move the object
templates to acquire collision-aware positions. This time we
only need to change x and y in the position dictionary. We
first sort the objects on the ground by their horizontal dis-
tance to (0, 0). Nearer object template are processed more
first, which is likely to move fewer objects. We compute the
moving vector as below:

v =

X

i2nearer

di

||di||2
, di = (x� xi, y � yi) (2)

where x, y are defined in (1). When moving the objects
on the ground, the supported objects are moved together.
To judge collision, we calculate the distance of the nearest
point pair of two object templates. If the distance is less
than ⌧ , the two are considered colliding. For the supported
objects, we handle collision in a similar way with two differ-
ences: 1) we sort the supported objects on a same supporter
by their horizontal distance to the center of the supporting
surface. Further object templates are processed more first,
to avoid objects falling off the supporter; 2) the moving op-
eration only performs on individuals.

Finally, we convert the collision-aware positions to point
clouds. To make the point clouds more realistic, we control
the densities of object templates to be closer. We assume
the number of points on an object template mainly depends
on the surface area. As larger surfaces are more likely to be
captured by the sensor, we use the maximum of w ⇤ l, w ⇤h
and h ⇤ l of an object template to approximate its surface

area. Then the number of points for each object template
is set proportional to their surface areas using uniform sam-
pling, the largest one remaining N points.

3.3. Virtual Scene Utilization

Although the virtual scenes are physically reasonable,
there is still a huge domain gap between them and the real
scenes (e.g. backgrounds like walls are missed in the virtual
scenes), as the supervision for scene generation is too weak.
Therefore, we need to mining useful knowledge in virtual
scenes to make up for the information loss of position-level
annotation, rather than relying on the virtual scenes.

We refer to the virtual scenes and real scenes as source
domain and target domain respectively. A strong-weak do-
main adaptation method is utilized to solve the above prob-
lem, whose overall objective is:

max
D

min
B

J = Lsup(B)� Ladv(B,D)

= (L1 + L2)� (L3 + L4)

(3)

Ladv(O,D) = Lglobal + Lproposal (4)

where B refers to the backbone network (detector) and
D indicates the discriminators used for adversarial feature
alignment. Lsup aims to minimize the differences between
the predicted bounding boxes and the annotations, which
can be further divided into fully-supervised loss on source
domain (L1) and weakly-supervised loss on target domain
(L2). The objective of Ladv is to align the features from
source domain and target domain, which aims to utilize the
knowledge learned from source domain to detect objects in
target domain, without bounding box annotations. Ladv can
be divided into global feature alignment loss (L3) and pro-
posal feature alignment loss (L4). Below we will explain
these loss functions and our network in detail.

Firstly we elaborate on Lsup(B). As various back-
bones [31, 51, 55, 27] can be chosen as our detector, we
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Figure 3. The pipeline of our four-stage scene generation method. From (a) to (d), the virtual scene becomes more and more realistic.
We first process the shape dataset and choose proper object templates to construct the initial scene. Next we apply gravity and collision
constrains in turn, which makes the virtual scene physically sound. Finally we control the densities of object templates to be closer to make
the virtual scenes more realistic.

Next we traverse the initial positions to generate gravity-
aware positions. Note that we only need to change z
and SSH in the position dictionary. For supporters and
standers, we directly align their bottoms with the ground
(i.e. the XY plane). For a supportee, if its (x, y) fall in any
supporter’s MER, we assign it to the nearest supporter and
align its bottoms with the supporting surface. Otherwise, it
is aligned to the ground.

In order to avoid overlapping, we need to move the object
templates to acquire collision-aware positions. This time we
only need to change x and y in the position dictionary. We
first sort the objects on the ground by their horizontal dis-
tance to (0, 0). Nearer object template are processed more
first, which is likely to move fewer objects. We compute the
moving vector as below:

v =

X

i2nearer

di

||di||2
, di = (x� xi, y � yi) (2)

where x, y are defined in (1). When moving the objects
on the ground, the supported objects are moved together.
To judge collision, we calculate the distance of the nearest
point pair of two object templates. If the distance is less
than ⌧ , the two are considered colliding. For the supported
objects, we handle collision in a similar way with two differ-
ences: 1) we sort the supported objects on a same supporter
by their horizontal distance to the center of the supporting
surface. Further object templates are processed more first,
to avoid objects falling off the supporter; 2) the moving op-
eration only performs on individuals.

Finally, we convert the collision-aware positions to point
clouds. To make the point clouds more realistic, we control
the densities of object templates to be closer. We assume
the number of points on an object template mainly depends
on the surface area. As larger surfaces are more likely to be
captured by the sensor, we use the maximum of w ⇤ l, w ⇤h
and h ⇤ l of an object template to approximate its surface

area. Then the number of points for each object template
is set proportional to their surface areas using uniform sam-
pling, the largest one remaining N points.

3.3. Virtual Scene Utilization

Although the virtual scenes are physically reasonable,
there is still a huge domain gap between them and the real
scenes (e.g. backgrounds like walls are missed in the virtual
scenes), as the supervision for scene generation is too weak.
Therefore, we need to mining useful knowledge in virtual
scenes to make up for the information loss of position-level
annotation, rather than relying on the virtual scenes.

We refer to the virtual scenes and real scenes as source
domain and target domain respectively. A strong-weak do-
main adaptation method is utilized to solve the above prob-
lem, whose overall objective is:

max
D

min
B

J = Lsup(B)� Ladv(B,D)

= (L1 + L2)� (L3 + L4)

(3)

Ladv(O,D) = Lglobal + Lproposal (4)

where B refers to the backbone network (detector) and
D indicates the discriminators used for adversarial feature
alignment. Lsup aims to minimize the differences between
the predicted bounding boxes and the annotations, which
can be further divided into fully-supervised loss on source
domain (L1) and weakly-supervised loss on target domain
(L2). The objective of Ladv is to align the features from
source domain and target domain, which aims to utilize the
knowledge learned from source domain to detect objects in
target domain, without bounding box annotations. Ladv can
be divided into global feature alignment loss (L3) and pro-
posal feature alignment loss (L4). Below we will explain
these loss functions and our network in detail.

Firstly we elaborate on Lsup(B). As various back-
bones [31, 51, 55, 27] can be chosen as our detector, we

need to unify the 3D object detection networks and their
loss functions. As shown in Figure 2, we divide the detector
into three blocks: a backbone which extracts global seman-
tic features from the scene, a detection module which gener-
ates object proposals from the semantic features, and a pre-
diction head which predicts the semantic label and bound-
ing box from each object proposal feature. As in most cases
PointNet++ [34] and MLP are adopted as the backbone and
prediction head respectively, the main difference between
different detectors is the detection module. In terms of loss
function, we divide it into two parts: the loss for final pre-
diction and the loss for intermediate variable. The former
supervises the predicted semantic labels, centers, sizes, ori-
entations and objectness, which are the same for all detec-
tors. The latter depends on the detection module. In this pa-
per, we focus on the popular VoteNet [31] and the state-of-
the-art GroupFree3D [27]. In VoteNet, the detection mod-
ule predicts votes from the semantic features and aggregate
them to generate object proposals, in which voting coordi-
nates need to be supervised. In GroupFree3D, the detection
module samples the semantic features to generate initial ob-
ject proposals and utilize a transformer [45] to refine them
iteratively, where the sampled points require supervision.

For fully-supervised training, we set L1 just the same
as the losses used in the original papers. For weakly-
supervised training, as only objects’ centers and semantic
classes are available, we modify both parts of L1 and set
L2 = Lf + Li. Lf = Ls + Lo + Lc is used to super-
vise the final prediction, where Ls and Lo are the cross en-
tropy losses for semantic labels and objectness scores, and
Lc = max(||C1 � C2||2 � �Sc, 0) is the hinge loss for
centers. C1 is the ground-truth center, C2 is the predicted
center, and Sc indicates the average size of the object’s se-
mantic class. In Li, we only make use of the center co-
ordinates to weakly supervise the intermediate process of
training, which we detail in supplementary.

Secondly we analyze Ladv(B,D) specifically. We con-
duct feature alignment in an adversarial manner: the dis-
criminator predicts which domain the features belong to,
and the backbone network aims to generate features that are
hard to discriminate. Th sign of gradients is flipped by a
gradient reversal layer [14].

As the virtual scenes and real scenes are processed by the
same network, the ideal situation would be: L2 helps the
network learn how to process real scenes, and L1 compen-
sates for the information loss of centers and sizes. However,
due to the domain gap, L1 will introduce domain-specific
knowledge of the virtual scenes, which impairs the influ-
ence of L2. In order to help L1 and L2 work in a com-
plementary way, we align the global semantic features and
object proposal features with L3 and L4 respectively. In-
spired by [39], the features are aligned with different in-
tensities at different stages. For global semantic features,

we use a PointNet [33] to predict the domain label. Focal
loss [39, 24] is utilized to apply weak alignment:

Lglobal = �
BX

i=1

(1� pi)
� log(pi), � > 1 (5)

where B is the batch size, and pi refers to the confidence
probability of the global discriminator’s judgement. Fea-
tures with high p is easy to judge, which means they are
domain-specific features and forcing invariance to them can
hurt performance. So a small weight is used to reduce
their impact on training. For object proposal features, they
will be directly taken to predict the properties for bounding
boxes. As the properties are domain-invariant and have real
physical meaning, we strongly align this stage of features
using an objectness weighted L2 loss:

Lproposal =

BX

i=1

NX

j=1

sij(1� pij)
2 (6)

where B is the batch size, N is the number of proposals,
sij refers to the objectness label and pij is the confidence
probability of the proposal discriminator’s judgement. The
detailed architectures of the two discriminators are shown
in Figure 2.

4. Experiment

In this section, we conduct experiments to show the ef-
fectiveness of our VSS approach. We first describe the
datasets and experimental settings. Then we evaluate the
generated virtual scenes and report the detection results of
our method. We also design experiment to show the robust-
ness of our virtual scene generation method and demon-
strate the practicality of our approach. Finally we de-
sign several ablation studies to verify our scene generation
method and domain adaptation method in detail.

4.1. Experiments Setup

Datasets: We choose ModelNet40 [50] as the dataset
of object templates. ModelNet40 contains 12,311 CAD
models from 40 categories, split into 9,843 for training and
2,468 for testing. The CAD models are represented as 3D
meshes. We process and analyze them as mentioned before.

We perform experiments on ScanNet [11] dataset. Scan-
Net is a richly annotated dataset of indoor scenes with
1201 training scenes, 312 validation scenes and 100 test-
ing scenes. Correspondence between ModelNet40 cate-
gories and the instances appeared in ScanNet is available.
We choose categories of ModelNet40 which are discrimi-
native and have enough samples in ScanNet’s scenes and
report detection performance on them. The result is 22 cat-
egories, which is shown in Table 1. Since ScanNet does not
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generated virtual scenes and report the detection results of
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ness of our virtual scene generation method and demon-
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models from 40 categories, split into 9,843 for training and
2,468 for testing. The CAD models are represented as 3D
meshes. We process and analyze them as mentioned before.
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native and have enough samples in ScanNet’s scenes and
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egories, which is shown in Table 1. Since ScanNet does not

Table 1. Annotating time and detection results of different meth-
ods based on various types of annotation. The benchmark is de-
tailed in Section 4. (BBox refers to box annotation. S-L and P-L
mean scene-level and position-level annotations respectively.)

Annotation BBox [22] S-L [35] P-L [23] P-L(BR)
Time(s per object) 110 1 5 5

mAP@0.25(%) 54.2 <20 32.4 47.0

scene due to the lack of position information, and thus
the performance is far from satisfactory [35]. Consider-
ing the time-accuracy tradeoff, position-level annotation
is a more practical solution. However, previous position-
level weakly-supervised 3D detection methods still require
a number of precisely labeled boxes and can only cope
with sparse outdoor scenes [23, 24]. Purely position-level
weakly-supervised method for the complicated indoor de-
tection task is still under exploration.

In this paper, we propose a shape-guided label enhance-
ment approach called Back to Reality (BR) for weakly-
supervised 3D object detection1. To reduce the labor cost,
we only label the center of each object in the 3D space
and the labeling error of centers is allowed2. While largely
reducing the workload of labeling, the information loss is
non-negligible from box annotations to centers. To ad-
dress these, BR converts the weak labels into virtual scenes
which contain much of the lost information, and in turn uti-
lizes them to additionally supervise real-scene training, as
shown in Figure 1. Our approach is based on two moti-
vations: 1) in 3D vision, large-scale datasets of synthetic
shapes are available. They contain rich geometry informa-
tion, which can serve as strong prior to assist 3D object de-
tection; 2) the position-level annotations are not only su-
pervision for training, but they also provide coarse layout
of the scene. Therefore, we assemble the 3D shapes into
fully-annotated virtual scenes according to the coarse lay-
out and apply physical constraints on them to remedy the
information loss. Then a virtual-to-real domain adaptation
method is presented to align the global features and object
proposal features extracted by the detector between the real
and virtual scenes. Moreover, our method can take advan-
tage of the precise center labels in virtual scenes to correct
the center error of position-level annotations. In this way
the useful knowledge contained in virtual scenes is trans-
ferred back to reality. Experimental results on ScanNet [9]
show the effectiveness of the proposed BR method.

2. Related Work

3D Shape to Scene: Since it is much easier to obtain
a large scale synthetic 3D shape dataset than a real scene

1Label enhancement (LE) is a technique to recover label distributions
from logical labels, as defined in [48]. Here we extend the concept of LE
to denote the process of recovering the lost information for weak labels.

2We show the detailed labeling strategy in Section 3.1.

dataset, utilizing the shapes to assist scene understanding
is a promising idea. Existing approaches can be divided
into two categories: supervised [4, 5, 8, 42] and unsuper-
vised [10, 21, 26, 32, 44]. For supervised methods, the syn-
thetic shapes are usually used to complete the imperfect real
scene scans. Given a set of CAD models and a real scan, a
network is trained to predict how to place the CAD mod-
els in the scene and replace the partial and noisy real ob-
jects [4, 5, 8, 42]. Human-annotated pairs of raw scans and
object-aligned scans are used in the training process. As su-
pervised methods need extra human labor, that may limit the
full utilization of 3D shape datasets. Unsupervised methods
are usually used for data augmentation or dataset expansion.
3D CAD models are placed in a random manner following
the basic physical constraints, in order to generate mixed
reality scenes [10, 44] or virtual scenes [21, 26]. Recently,
RandomRooms [32] proposes to use ShapeNet dataset for
unsupervised pretraining of 3D detector. Our approach also
utilizes 3D shapes to assist object detection in an unsuper-
vised manner. Differently, we aim to make use of synthetic
shapes to enhance the weak label and gain stronger super-
vision in position-level weakly-supervised detection task.

3D Object Detection: Early 3D object detection meth-
ods mainly include template-based methods [18, 20, 25]
and sliding-window methods [39, 40]. Deep learning-based
3D detection methods for point clouds began to emerge
thanks to PointNet/PointNet++ [29, 30]. However, meth-
ods in [6, 7, 17, 28] rely on generating 2D proposals and
then project them into the 3D space, which is hard to
handle scenes with heavy occlusion. More recently, net-
works that directly consume point clouds have been pro-
posed [13, 22, 27, 37, 53]. While the development of 3D
object detection methods is rapid, the application is still re-
stricted partially due to the limited labeled data. To reduce
the labor of human annotation, weakly-supervised meth-
ods [23, 24, 31, 35], semi-supervised methods [43, 51] and
unsupervised pretraining methods [14,32,47,49] have been
proposed recently. However, pretraining methods rely on
huge computing resources for training the networks in a
contrastive learning manner. Semi-supervised methods fol-
low the similar procedure as their 2D counterparts [41] and
do not fully exploring the characteristics of 3d data. There-
fore, we investigate weakly-supervised approach tailored
for 3D object detection task.

3. Approach

Figure 2 illustrates the framework of our approach.
Given real scenes with position-level annotations, we uti-
lize 3D shapes to convert the weak labels into virtual scenes,
which are utilized to provide additional supervision for the
training of the detector. In this section, we first discuss
our weakly-supervised setting and then demonstrate the key
steps of BR.
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Figure 4. Demonstration of our center refinement method. We first
jitter the center labels in source domain, and utilize a PointNet-
like module to predict the center offset from the local graph of the
jittered centers. This module can be directly utilized to predict the
center error in target domain as the global semantic features from
the two domains have been aligned.

which can be further divided into the loss for center re-
finement module (L1), fully-supervised detection loss on
source domain (L2) and weakly-supervised detection loss
on target domain (L3). The objective of Ladv is to align
the features from source domain and target domain, which
aims to utilize the knowledge learned from source domain
to assist object detection in target domain. Ladv can be di-
vided into global feature alignment loss (L4) and proposal
feature alignment loss (L5). Below we will explain these
loss functions and our network in detail.

Firstly we elaborate on Lsup(O). As shown in Figure 2,
we divide the detector into three blocks: a backbone which
extracts global semantic features from the scene, a detection
module which generates object proposals from the semantic
features, and a prediction head which predicts the semantic
label and bounding box from each object proposal feature.

During training, we jointly refine the imprecise center
labels in target domain and supervise the predictions of the
detector. As shown in Figure 4, we jitter the center labels in
source domain by adding noise within 10% of the objects’
sizes to imitate the labeling error in target domain. Then
for each jittered center, we query its k nearest neighbors
in 3D euclidean space from the global semantic features to
construct a local graph, and predict the center offset through
a PointNet-like module:

p(c) = MLP2

⇢
max

i2N(c)
{MLP1[fi; ci � c]}

�
(3)

where p denotes the PointNet-like module, c indicates the
jittered center label, N(c) is the index set of the k near-
est neighbors of c, fi is the global semantic feature, whose
coordinate is ci, and max refers to the channel-wise max-
pooling. We set L1 as the mean square error between
the ground-truth center offset and p(c). Then for fully-
supervised training, the detection loss L2 is the same as the
loss utilized in the original method. For weakly-supervised
training, we utilize p to predict the center error in target
domain and acquire refined center labels. We set L3 as a

simpler version of L2 which ignores the supervision for box
sizes. More details about L3 can be found in supplementary.

Secondly we analyze Ladv(O,D). We conduct feature
alignment in an adversarial manner: the discriminator pre-
dicts which domain the features belong to, and the detector
aims to generate features that are hard to discriminate. The
sign of gradients is flipped by a gradient reversal layer [12].

As the virtual scenes and real scenes are processed by
the same network, we hope L3 helps the network learn how
to locate each object in real scenes, and L2 compensates
for the information loss of centers and sizes. However,
due to the domain gap, L2 will introduce domain-specific
knowledge of the virtual scenes, which impairs the influ-
ence of L3. Besides, the center refinement module is trained
only on source domain, which may not perform well on tar-
get domain. Therefore, we align the global semantic fea-
tures and object proposal features with L4 and L5 respec-
tively. Inspired by [36], the features are aligned with differ-
ent intensities at different stages. For global semantic fea-
tures, we use a PointNet to predict the domain label. Focal
loss [19, 36] is utilized to apply weak alignment:

L4 = �
BX

i=1

(1� pi)
� log(pi), � > 1 (4)

where B is the batch size, and pi refers to the probability
of the global discriminator’s predictions on the correspond-
ing domain. Features with high p is easy to judge, which
means they are domain-specific features and forcing invari-
ance to them can hurt performance. So a small weight is
used to reduce their impact on training. For object proposal
features, they will be directly taken to predict the properties
for bounding boxes. As the properties are domain-invariant
and have real physical meaning, we strongly align this stage
of features using an objectness weighted L2 loss:

L5 =

BX

i=1

NX

j=1

sij(1� pij)
2 (5)

where B is the batch size, N is the number of proposals, sij
refers to the objectness label and pij is the probability of the
proposal discriminator’s predictions on the corresponding
domain. We detail the architectures of center refinement
module and discriminators in supplementary.

4. Experiment

In this section, we conduct experiments to show the
effectiveness of our BR approach. We first describe the
datasets and experimental settings. Then we evaluate the
generated virtual scenes and present the detection results
of our method. We also design experiments to show the ro-
bustness of our virtual scene generation method and demon-
strate the practicality of our approach. Finally we design

Table 2. Number of objects in each category in the training set and validation set of ScanNet, and average number of points of objects in
each category in the real scenes and the virtual scenes.

Property
Bath-

Bed Bench
Book-

Bottle Chair Cup
Cur-

Desk Door Dresser
Key-

Lamp Laptop Monitor
Night-

Plant Sofa Stool Table Toilet
Ward-

tub shelf tain board stand robe
# train

Object Number
113 308 58 786 234 4357 132 408 551 2028 174 193 376 86 574 190 293 406 315 1526 201 98

# validate 31 81 21 234 41 1368 34 95 127 467 43 53 83 25 191 34 50 97 51 407 58 19
# real

Point Number
2941 3905 1015 2679 101 726 66 2919 1525 1110 1274 74 272 173 370 700 792 2718 525 1282 1445 2762

# virtual 6891 8683 4097 6258 162 2135 91 5495 5004 6048 2703 480 609 343 939 1088 1249 7250 1391 5421 3716 6105

Table 3. The class-specific detection results (mAP@0.25) of different weakly-supervised methods on ScanNet validation set. (FSB is the
fully-supervised baseline. † indicates the method requires a small proportion of bounding boxes to refine the prediction. Other methods
only use position-level annotations as supervision. We set best scores in bold, runner-ups underlined.)

Setting batht. bed bench bsf. bot. chair cup curt. desk door dres. keyb. lamp lapt. monit. n.s. plant sofa stool table toil. ward. mAP@0.25

Vo
te

N
et

FSB [27] 66.8 86.2 24.4 55.6 0.0 88.3 0.0 48.5 62.8 45.8 24.1 0.1 47.2 5.2 62.1 73.2 13.4 88.7 35.1 62.6 94.6 7.8 45.1
WSB 21.9 46.9 0.3 2.3 0.0 53.7 0.0 0.9 32.1 1.0 6.6 0.1 0.2 0.1 1.8 53.6 0.1 57.0 4.6 6.4 19.7 0.0 14.1
WS3D† [23] 22.0 58.5 10.3 5.8 0.0 60.4 0.0 4.1 26.7 3.2 1.6 0.0 14.0 0.6 18.6 46.3 0.4 32.7 11.8 23.5 65.0 0.0 18.4
WSBPP 43.2 58.0 2.4 16.1 0.0 75.1 0.7 7.9 54.2 6.4 7.1 2.3 35.2 18.4 12.8 64.0 4.4 68.5 20.2 22.0 71.6 5.2 27.1
WSBPM 45.0 49.6 5.5 18.5 0.0 62.7 2.9 11.4 49.6 6.9 2.5 1.0 30.0 7.6 21.4 64.8 7.3 79.6 23.1 35.2 80.9 2.2 27.6
BRP (Ours) 51.2 73.0 16.4 27.1 0.1 70.3 0.0 8.3 44.5 7.3 16.0 1.5 40.2 7.7 42.1 50.8 7.4 67.1 10.7 39.0 88.4 18.1 31.2
BRM (Ours) 57.1 80.4 14.3 31.7 0.0 77.4 0.0 13.2 49.7 11.3 14.8 1.0 43.5 6.0 56.5 65.0 10.6 80.2 26.9 44.2 91.4 6.5 35.5

G
ro

up
Fr

ee
3D

FSB [22] 86.2 87.5 16.3 49.6 0.6 92.5 0.0 70.9 78.5 53.5 56.0 6.4 68.2 11.5 81.5 88.5 15.2 88.2 45.6 65.0 99.7 31.2 54.2

WSB 75.0 75.7 4.3 17.2 0.0 81.4 0.0 3.5 34.0 4.7 3.2 2.1 46.6 3.3 45.8 52.8 8.3 71.0 15.7 18.1 90.8 0.7 29.7
WS3D† [23] 71.9 78.3 0.9 20.2 0.8 79.2 1.0 2.9 47.6 7.7 10.6 19.2 41.6 13.5 65.6 41.2 0.8 74.6 17.7 26.3 88.9 1.7 32.4
WSBPP 71.9 77.1 7.7 25.2 3.0 80.6 0.4 3.2 50.1 10.5 36.3 17.0 52.9 30.3 59.9 63.8 9.6 78.2 28.4 25.3 93.3 14.4 38.2
WSBPM 81.8 82.6 0.0 35.0 0.0 77.5 0.4 27.1 38.4 7.6 22.3 9.7 44.3 24.4 65.4 76.5 5.5 62.4 34.7 28.7 99.7 5.4 37.7
BRP (Ours) 72.3 73.5 45.8 27.7 0.0 77.2 8.2 30.8 35.0 17.8 51.7 0.3 64.2 25.0 63.5 66.6 23.8 86.7 33.9 37.6 98.3 5.2 43.0
BRM (Ours) 85.3 90.9 8.8 34.3 1.9 80.0 7.7 24.7 58.0 20.8 45.4 31.3 64.4 25.8 67.5 76.7 27.3 91.4 43.3 46.7 94.8 8.3 47.1

several ablation studies to verify our scene generation and
domain adaptation method.

4.1. Experiments Setup

Datasets: We choose ModelNet40 [45] as the dataset
of synthetic 3D shapes. ModelNet40 contains 12,311 syn-
thetic CAD models from 40 categories, split into 9,843 for
training and 2,468 for testing. We perform experiments
on the ScanNet [9] dataset. ScanNet is a richly annotated
dataset of indoor scenes with 1201 training scenes and 312
validation scenes. For each object appeared in the scenes,
ScanNet officially provides its corresponding class in Mod-
elNet40. Therefore we choose 22 categories of ModelNet40
which have more than 50 objects in ScanNet training set
and 20 in the validation set, and report detection perfor-
mance on them. Since ScanNet does not provide human-
labeled bounding boxes, we predict axis-aligned bound-
ing boxes and evaluate the prediction on validation set as
in [22,27,46,50]. We name this benchmark ScanNet-md40.

Compared to the 18-category setting in previous
works [22, 27, 46], our ScanNet-md40 benchmark is more
challenging. Apart from the categories of big objects (e.g.
desk and bathtub), we also aim to detect relatively small
objects, such as laptop, keyboard and monitor. Hence our
benchmark can better evaluate the performance of both de-
tectors and weakly-supervised learning methods.

Compared Methods: To illustrate the effect of our
BR approach, the popular VoteNet [27] and state-of-the-
art GroupFree3D [22] are selected as our detectors. We

compare BR with the following settings: 1) FSB: fully-
supervised baseline, which serves as the upper bound of
weakly-supervised methods; 2) WSB: weakly-supervised
baseline, which trains the detector on real scenes by us-
ing L3 only; 3) WS3D: another position-level weakly-
supervised approach proposed in [23], which makes use of a
number of precisely annotated bounding boxes; 4) WSBP:
WSB pretrained on the virtual scenes. For settings which
require the virtual scenes, we conduct experiments on two
versions of virtual scenes (from points/meshes), which are
distinguished by subscripts M and P respectively.

Implementation Details: We set N = 10000, Amin =

0.1m2, Hmin = 0.1m, �h = 0.02m, k = 16 and
� = 3. During training, as real scenes are more compli-
cated, the converging of L3 is much slower than L2. There-
fore we multiple L2 by 0.1 to slow down the training on
virtual scenes and stabilize the process of feature align-
ment. To better train our center refinement module, the
global semantic features should not change rapidly. There-
fore we first train BR without L1 until convergence, and
then use the whole loss function to fine-tune the network.
For GroupFree3D which has several decoders and each one
outputs a stage of proposal features, we conduct feature
alignment only for the last stage.

Different from previous works [22,27], in our setting we
need to detect small objects, such as bottle, cup and key-
board. As it is difficult for the network to extract high-
quality features of these objects, we utilize an augmentation
strategy to alleviate the problem, which is similar to [16].

Table 4. The detection results (mAP@0.25) of BR under different
error rate for center labeling on ScanNet. We adopt GroupFree3D
as the detector and utilize mesh-version virtual scenes for BR.

Method Error Rate
10% 20% 30% 40% 50%

WSB 29.7 26.8 25.0 22.3 19.7
BRM (Ours) 47.1 46.0 43.9 43.1 41.2

*URXQG�WUXWK %5 :6%

Figure 6. Visual Results on ScanNet. We compare BR and WSB
with the ground-truth bounding boxes.

shows current 3D detectors still face huge challenges in
small object detection. More detection results (mAP@0.5)
can be found in supplementary.

Robustness for Labeling Error: In our labeling strat-
egy, the center error is within 10%, which we define as the
error rate, of the object’s size. To show the robustness of
our approach, we gradually increase this rate from 10% to
50% by randomly jittering the centers according to the box
sizes, and report the detection results of WSB and BRM

(for GroupFree3D) in terms of mAP@0.25. As shown in
Table 4, with the increasing of error rate, the performance
of BR degrades more slowly than WSB. Even if the error
rate is 50%, which allows us to label the centers in a more
time-saving strategy, BR can still achieve satisfactory re-
sults (higher than 0.41 in terms of mAP@0.25).

Visualization Results: We visualize the detection re-
sults of WSB and BRM (for GroupFree3D) on ScanNet. As
shown in Figure 6, BR can produce more accurate detection
results with less false positives. The visual results further
confirm the effectiveness of the proposed method.

4.3. Ablation Study

We further design ablation experiments to study the in-
fluences of each scene generation step and each domain
adaptation loss to the performance of our BR approach. In
this section, we adopt VoteNet as the detector and use point-
version virtual scenes for universality.

Table 5. The detection results (mAP@0.25) of BR with virtual
scenes at different generation stages on ScanNet. Here the detector
is VoteNet and the virtual scenes are point-version.

Gravity Collision Density mAP@0.25Constrain Constrain Control
26.3

X 27.2
X X 28.5
X X X 31.2

Table 6. The detection results (mAP@0.25) of BR with differ-
ent domain adaptation modules on ScanNet. Here the detector is
VoteNet and the virtual scenes are point-version.

Global Proposal Center mAP@0.25Alignment Alignment Refinement
24.2

X 28.7
X 27.4

X X 30.2
X X X 31.2

In Table 5, we illustrate that in our virtual scene gener-
ation pipeline, the physical constraints and density control
are effective. As the virtual scenes become more realistic,
the performance of our BR approach is getting better.

As shown in Table 6, we show the effect of each domain
adaptation module and the center refine module. It can be
seen that with global alignment or object proposal align-
ment, the detection performance can be boosted by 3.5%
and 2.2% respectively. By combining the two kinds of
feature alignments, we achieve higher detection accuracy.
Having applied the center refinement method, the perfor-
mance is further boosted by 1.0%.

4.4. Limitation

Due to the limited number of categories in Model-
Net40, we selectively evaluate the performance of BR on 22
classes. However, as online repositories of user-generated
3D shapes, such as the 3D Warehouse repository [3], con-
tain 3D shapes in almost any category, BR can be eas-
ily extended to 3D object detection on more classes once
these online synthetic shapes are organized into a standard
dataset. Therefore, ideally we can leverage a larger syn-
thetic 3D shape dataset, which covers all objects that may
appear in indoor scenes. This dataset can promote more re-
searches on 3D scene understanding with synthetic shapes,
which we leave for future work.

5. Conclusion

In this paper, we have proposed a new label enhance-
ment approach, namely Back to Reality (BR), for 3D ob-
ject detection trained using only object centers and class

Table 4. The detection results (mAP@0.25) of BR under different
error rate for center labeling on ScanNet. We adopt GroupFree3D
as the detector and utilize mesh-version virtual scenes for BR.

Method Error Rate
10% 20% 30% 40% 50%

WSB 29.7 26.8 25.0 22.3 19.7
BRM (Ours) 47.1 46.0 43.9 43.1 41.2
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Figure 6. Visual Results on ScanNet. We compare BR and WSB
with the ground-truth bounding boxes.

shows current 3D detectors still face huge challenges in
small object detection. More detection results (mAP@0.5)
can be found in supplementary.

Robustness for Labeling Error: In our labeling strat-
egy, the center error is within 10%, which we define as the
error rate, of the object’s size. To show the robustness of
our approach, we gradually increase this rate from 10% to
50% by randomly jittering the centers according to the box
sizes, and report the detection results of WSB and BRM

(for GroupFree3D) in terms of mAP@0.25. As shown in
Table 4, with the increasing of error rate, the performance
of BR degrades more slowly than WSB. Even if the error
rate is 50%, which allows us to label the centers in a more
time-saving strategy, BR can still achieve satisfactory re-
sults (higher than 0.41 in terms of mAP@0.25).

Visualization Results: We visualize the detection re-
sults of WSB and BRM (for GroupFree3D) on ScanNet. As
shown in Figure 6, BR can produce more accurate detection
results with less false positives. The visual results further
confirm the effectiveness of the proposed method.

4.3. Ablation Study

We further design ablation experiments to study the in-
fluences of each scene generation step and each domain
adaptation loss to the performance of our BR approach. In
this section, we adopt VoteNet as the detector and use point-
version virtual scenes for universality.

Table 5. The detection results (mAP@0.25) of BR with virtual
scenes at different generation stages on ScanNet. Here the detector
is VoteNet and the virtual scenes are point-version.
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VoteNet and the virtual scenes are point-version.
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In Table 5, we illustrate that in our virtual scene gener-
ation pipeline, the physical constraints and density control
are effective. As the virtual scenes become more realistic,
the performance of our BR approach is getting better.

As shown in Table 6, we show the effect of each domain
adaptation module and the center refine module. It can be
seen that with global alignment or object proposal align-
ment, the detection performance can be boosted by 3.5%
and 2.2% respectively. By combining the two kinds of
feature alignments, we achieve higher detection accuracy.
Having applied the center refinement method, the perfor-
mance is further boosted by 1.0%.

4.4. Limitation

Due to the limited number of categories in Model-
Net40, we selectively evaluate the performance of BR on 22
classes. However, as online repositories of user-generated
3D shapes, such as the 3D Warehouse repository [3], con-
tain 3D shapes in almost any category, BR can be eas-
ily extended to 3D object detection on more classes once
these online synthetic shapes are organized into a standard
dataset. Therefore, ideally we can leverage a larger syn-
thetic 3D shape dataset, which covers all objects that may
appear in indoor scenes. This dataset can promote more re-
searches on 3D scene understanding with synthetic shapes,
which we leave for future work.
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In this paper, we have proposed a new label enhance-
ment approach, namely Back to Reality (BR), for 3D ob-
ject detection trained using only object centers and class
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as the detector and utilize mesh-version virtual scenes for BR.
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Figure 6. Visual Results on ScanNet. We compare BR and WSB
with the ground-truth bounding boxes.

shows current 3D detectors still face huge challenges in
small object detection. More detection results (mAP@0.5)
can be found in supplementary.

Robustness for Labeling Error: In our labeling strat-
egy, the center error is within 10%, which we define as the
error rate, of the object’s size. To show the robustness of
our approach, we gradually increase this rate from 10% to
50% by randomly jittering the centers according to the box
sizes, and report the detection results of WSB and BRM

(for GroupFree3D) in terms of mAP@0.25. As shown in
Table 4, with the increasing of error rate, the performance
of BR degrades more slowly than WSB. Even if the error
rate is 50%, which allows us to label the centers in a more
time-saving strategy, BR can still achieve satisfactory re-
sults (higher than 0.41 in terms of mAP@0.25).

Visualization Results: We visualize the detection re-
sults of WSB and BRM (for GroupFree3D) on ScanNet. As
shown in Figure 6, BR can produce more accurate detection
results with less false positives. The visual results further
confirm the effectiveness of the proposed method.

4.3. Ablation Study

We further design ablation experiments to study the in-
fluences of each scene generation step and each domain
adaptation loss to the performance of our BR approach. In
this section, we adopt VoteNet as the detector and use point-
version virtual scenes for universality.

Table 5. The detection results (mAP@0.25) of BR with virtual
scenes at different generation stages on ScanNet. Here the detector
is VoteNet and the virtual scenes are point-version.
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VoteNet and the virtual scenes are point-version.
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In Table 5, we illustrate that in our virtual scene gener-
ation pipeline, the physical constraints and density control
are effective. As the virtual scenes become more realistic,
the performance of our BR approach is getting better.

As shown in Table 6, we show the effect of each domain
adaptation module and the center refine module. It can be
seen that with global alignment or object proposal align-
ment, the detection performance can be boosted by 3.5%
and 2.2% respectively. By combining the two kinds of
feature alignments, we achieve higher detection accuracy.
Having applied the center refinement method, the perfor-
mance is further boosted by 1.0%.

4.4. Limitation

Due to the limited number of categories in Model-
Net40, we selectively evaluate the performance of BR on 22
classes. However, as online repositories of user-generated
3D shapes, such as the 3D Warehouse repository [3], con-
tain 3D shapes in almost any category, BR can be eas-
ily extended to 3D object detection on more classes once
these online synthetic shapes are organized into a standard
dataset. Therefore, ideally we can leverage a larger syn-
thetic 3D shape dataset, which covers all objects that may
appear in indoor scenes. This dataset can promote more re-
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ment approach, namely Back to Reality (BR), for 3D ob-
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n Shape-guided Label Enhancement: we assemble synthetic 3D shapes 
according to the layout information provided by the weak annotations, 
and apply physical constraints on the constructed virtual scenes to 
remedy the information loss from boxes to centers.

n Virtual-to-Real Domain Adaptation: given real scenes with position-level 
annotations and virtual scenes with box annotations, we model the 
learning of 3D object detector as a domain adaptation problem.

n The position-level annotations are not precise due to labeling error. Thus 
we make use of the perfect virtual labels to refine them.

n As virtual scenes generated from weak labels lack background or fine-
grained layout, the domain gap between real and virtual scenes is very 
large. We solve this by strong-weak feature alignment.
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