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Abstract—In this paper, we propose a weakly-supervised approach for 3D object detection, which makes it possible to train a strong
3D detector with position-level annotations (i.e. annotations of object centers and categories). In order to remedy the information loss
from box annotations to centers, our method makes use of synthetic 3D shapes to convert the position-level annotations into virtual
scenes with box-level annotations, and in turn utilizes the fully-annotated virtual scenes to complement the real labels. Specifically, we
first present a shape-guided label-enhancement method, which assembles 3D shapes into physically reasonable virtual scenes
according to the coarse scene layout extracted from position-level annotations. Then we transfer the information contained in the virtual
scenes back to real ones by applying a virtual-to-real domain adaptation method, which refines the annotated object centers and
additionally supervises the training of detector with the virtual scenes. Since the shape-guided label enhancement method generates
virtual scenes by human-heuristic physical constraints, the layout of the fixed virtual scenes may be unreasonable with varied object
combinations. To address this, we further present differentiable label enhancement to optimize the virtual scenes including object
scales, orientations and locations in a data-driven manner. Moreover, we further propose a label-assisted self-training strategy to fully
exploit the capability of detector. By reusing the position-level annotations and virtual scenes, we fuse the information from both
domains and generate box-level pseudo labels on the real scenes, which enables us to directly train a detector in fully-supervised
manner. Extensive experiments on the widely used ScanNet and Matterport3D datasets show that our approach surpasses current
weakly-supervised and semi-supervised methods by a large margin, and achieves comparable detection performance with some
popular fully-supervised methods with less than 5% of the labeling labor.

Index Terms—3D Object Detection, Weakly-supervised Learning, Label Enhancement.
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1 INTRODUCTION

T HREE-DIMENSIONAL object detection is a fundamental scene
understanding problem, which aims to detect 3D bounding

boxes and semantic labels from a point cloud of 3D scene. Due
to the irregular form of point clouds and complex contexts in 3D
scenes, most existing 2D methods [1], [2], [3] cannot be directly
applied to 3D object detection. Fortunately, with the development
of deep learning techniques on point cloud understanding [4], [5],
recent works [6], [7], [8], [9] have employed deep neural networks
to directly detect objects from point clouds and achieved favorable
performance.

Despite the successes in deep learning based object detection
on point clouds, massive amounts of labeled bounding boxes
significantly limits the applications of these methods, as labeling
a precise 3D box takes around 120s even by an experienced an-
notator [10]. Therefore, 3D object detection methods using cheap
labels are desirable for practical applications. Motivated by this,
increasing attention has been paid to weakly-supervised 3D object
detection methods, which replace the box-level annotations with
simpler ones to largely reduce the annotating time. Mainstream
weakly-supervised methods for 3D object detection can be divided
into two categories: scene-level [11] and position-level [12], [13]
where only the class tag (about 1s per object) and both object cen-
ter and class (about 5s per object) are annotated for each instance
respectively. While scene-level annotation is more time-saving, it
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is hard for the detector to learn how to precisely locate each object
in a scene due to the lack of position information, and thus the
performance is far from satisfactory [11]. Considering the time-
accuracy tradeoff, position-level annotation is a more practical
solution. However, previous position-level weakly-supervised 3D
detection methods still require a number of precisely labeled boxes
and can only cope with sparse outdoor scenes [12], [13]. We study
purely position-level weakly-supervised 3D object detection for
the complicated indoor scenes, where the spatial relation between
objects are complicated and the size variance of objects is large.

In this paper, we propose a data-efficient training paradigm
called BackToReality (BR) for weakly-supervised 3D object de-
tection. To reduce the labor cost, we only label the center and
category of each object in the 3D space and the labeling error
of centers is allowed1. While largely reducing the workload of
labeling, the information loss is non-negligible from box annota-
tions to centers. To address these, BR converts the weak labels
into virtual scenes which complements object size information
and in turn utilizes them to additionally supervise real-scene
training, as shown in Fig. 1. Our approach is based on two
motivations: 1) in 3D vision, large-scale datasets of synthetic
shapes are available. They contain rich geometry information,
which can serve as strong priors to assist 3D object detection; 2)
the position-level annotations are not only supervision for training,
but they also provide coarse layout of the scene. Therefore, we
first present a shape-guided label-enhancement method2, which

1. We show the detailed labeling strategy in Section 3.1.
2. Label enhancement (LE) is a technique to recover label distributions from

logical labels, as defined in [14]. Here we extend the concept of LE to denote
the process of recovering the lost information for weak labels.
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Fig. 1. Demonstration of BR and BR++. (a) shows the proposed training
paradigm of BR. We consider position-level annotations as the coarse
layout of the scenes, which is utilized to generate virtual scenes from a
3D shape repository by our shape-guided label enhancement method.
Physical constraints are applied to construct the virtual scenes for
remedying the information loss from box annotations to centers. Then
a virtual-to-real domain adaptation method is presented to additionally
supervise the training of real-scene 3D object detector with the virtual
scenes. Dashed arrows indicate supervision for training. (b) demon-
strates the presented differentiable label enhancement module of BR++.
In order to improve the unreasonable scene arrangement caused by
human-heuristic generation of the virtual scenes, we conduct label
enhancement in a data-driven manner and optimize this module end-
to-end with the detector. (c) illustrates the label-assisted self-training
method of BR++. Aiming to fully exploit the capability of the detector, we
further utilize position-level annotations and virtual scenes to assist the
post-processing of the predictions and generate high-quality box-level
pseudo labels on the real scenes.

assembles the 3D shapes into fully-annotated virtual scenes with
physical constraints according to the coarse layout to remedy the
information loss. Then a virtual-to-real domain adaptation method
is presented to align the global features and object proposal
features between the real and virtual scenes. Moreover, our method
can take advantage of the precise center labels in virtual scenes to
correct the center error of position-level annotations. In this way
the useful knowledge contained in virtual scenes is transferred
back to reality.

In fact, the human-heuristic physical constraints cannot en-
sure that the layout of virtual scenes is reasonable, which may
lead to large domain gap between the virtual and real scenes.
Moreover, the feature alignment for domain adaptation ignores
the architecture design of the detector and thus cannot fully
exploit the network capability. Based on those observations, we
further propose BackToReality++ (BR++) with differentiable label
enhancement and label-assisted self-training. More specifically,
we maintain a set of learnable pose parameters which assign
the 3D shapes to proper positions in the scenes during training.
This enables us to optimize the virtual scenes end-to-end with
the detector in a data-driven manner. After training the detector,
we reuse the position-level annotations and virtual scenes to filter
out predicted bounding boxes with false categories, imprecise
centers and unreasonable sizes. In this way, we acquire pseudo
box-level annotations on real scenes to train the detector in a fully-
supervised manner. Extensive experiments on two mainstream in-
door datasets ScanNet and Matterport3D demonstrate the superior
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Fig. 2. Performance (mAP@0.25) vs. annotation cost (second per ob-
ject), tested on ScanNet-md40 benchmark. Compared with current fully-
supervised detectors including VoteNet [8] and GroupFree3D [9], semi-
supervised methods like SESS [16] and 3DIoUMatch [17] and weakly-
supervised methods such as WyPR [11] and WS3D [12], [13], our
methods achieve the best time-accuracy tradeoff. ∗ means that WS3D
additionally requires a small proportion of bounding boxes to refine the
predictions. Markers of different sizes represent different detectors: the
bigger one is GroupFree3D and the smaller one is VoteNet. For semi-
supervised methods, we report performance under different ratios of
annotated scenes (5%, 10% and 15%).

performance of our method and show position-level annotations
can be very competitive alternatives of box annotations for training
a strong 3D object detector. Under the same annotating time and
network architecture, our method surpasses previous state-of-the-
art weakly/semi-supervised methods by more than 12.4% in terms
of mAP@0.25. Moreover, we achieve comparable results with the
fully-supervised baseline on both datasets (within 2% mAP@0.25)
while only requires less than 5% labeling labor. Code is available
at: https://github.com/xuxw98/BackToReality.

This paper is an extended version of our conference paper [15],
where we make the following new contributions: 1) we extend the
shape-guided label enhancement method in the conference version
to a differentiable one by optimizing the pose parameters of syn-
thetic shapes end-to-end with the detector in a data-driven manner,
so that the layouts of virtual scenes become more reasonable and
the domain gap between real and virtual scenes is narrowed; 2) we
further design a label-assisted self-training paradigm for weakly-
supervised domain adaptation which generates pseudo box-level
labels on the real scenes, enabling us to train a detector with
explicit supervision and thus fully exploit the network capability;
3) we conduct extensive experiments on the more challenging
Matterport3D dataset to verify the generality of our approach.
Moreover, we further compare our method with semi-supervised
ones for more comprehensive evaluation.

2 RELATED WORK

We briefly review three related topics: 1) 3D object detection,
2) 3D scene generation with synthesis shapes and 3) 3D domain
adaptation.

3D Object Detection. In terms of fully-supervised 3D object
detection, early methods mainly include template-based meth-
ods [18], [19] and sliding-window methods [20], [21]. Deep
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learning-based 3D detection methods for point clouds began to
emerge thanks to PointNet/PointNet++ [4], [5]. However, methods
in [22], [23], [24], [25] rely on generating 2D proposals and
then project them into the 3D space, which is hard to handle
scenes with heavy occlusion. More recently, networks that di-
rectly consume point clouds have been proposed [6], [7], [8],
[9], [26]. PointRCNN [6] is a two-stage detector which first
generates 3D proposals directly from the whole point clouds and
then adopts region pooling to extract features for each object
proposal. VoteNet [8] proposes a one-stage detector using the
hough voting strategy for better object feature grouping. While
the development of 3D object detection methods is rapid, the
application is still restricted partially due to the limited labeled
data. To reduce the labor of human annotation, semi-supervised
methods [16], [17] and weakly-supervised methods [11], [12],
[13], [27] have been proposed recently. Semi-supervised methods
only label a part of the scenes. Following the similar procedure
as their 2D counterparts [28], they leverage a mutual learning
framework composed of an EMA teacher and a student, which
are fed with data under asymmetric augmentation. Different kinds
of consistency losses between the teacher and student outputs are
applied during training. Although semi-supervised methods bring
significant improvement compared to simply training on labeled
scenes, they still require more than 10% labeled scenes to achieve
a satisfactory performance, as shown in Fig. 2, while weakly-
supervised methods only need less than 5% labeling time [11],
[12]. However, existing weakly-supervised methods still face huge
challenges in the complicated indoor 3D object detection task,
which is the problem we aim to solve in this work.

3D Scene Generation with Synthesis Shapes. Since it is much
easier to obtain a large scale synthetic 3D shape dataset than a real
scene dataset, utilizing 3D shapes to assist scene understanding
is a promising idea. Existing approaches can be divided into
two categories: supervised [29], [30], [31], [32], [33], [34] and
unsupervised [35], [36], [37], [38], [39]. For supervised methods,
there are two main application scenarios: 3D reconstruction [18],
[29], [30], [31], [40] and indoor scene synthesis [32], [33], [34]. In
terms of 3D reconstruction, the synthetic shapes are usually used
to complete the imperfect real scene scans. Given a set of CAD
models and a real scan, a network is trained to predict how to place
the CAD models in the scene and replace the partial and noisy real
objects [29], [30], [31]. Human-annotated pairs of raw scans and
object-aligned scans are used in the training process. With respect
to indoor scene synthesis, recent works use GAN [41] or CNN
to recursively generate room layouts, based on which synthetic
shapes are placed into the scene [32], [33], [42], [43]. In this way,
given an empty or partial scene, multiple completions of the scene
can be acquired. Fully-annotated and complete scenes are required
during training. As supervised methods need extra human labor,
that may limit the full utilization of 3D shape datasets. Unsuper-
vised methods are usually used for data augmentation or dataset
expansion. 3D shapes are placed in a random manner following
the basic physical constraints, in order to generate mixed reality
scenes [35], [36] or virtual scenes [37], [38], [39]. Recently, Meta-
Sim [44] proposes a generative model of synthetic scenes, which
produces images as well as its corresponding ground-truth via a
graphics engine. MetaSim2 [45] further enhances this framework
by learning the scene structure in addition to parameters. Our
approach also utilizes 3D shapes to assist object detection in an
unsupervised manner. Differently, we aim to make use of synthetic
shapes to enhance the weak label and gain stronger supervision in

position-level weakly-supervised detection.
3D Domain Adaptation. Domain adaptation aims to generalize

the model trained on source domain to target domains where
data or label is limited. While extensive researches have been
conducted on domain adaptation tasks with 2D image data [46],
[47], [48], [49], [50], there are only a small number of literature
in the field of 3D point cloud domain adaptation. PointDAN [51]
proposes to jointly align local and global features using maximum
discrepancy and adversarial training for shape classification. Jaritz
et al. [52] projects point cloud to 2D images and train models
with multi-modal information. Yi et al. [53] presents a sparse
voxel network to perform point cloud completion for domain
adaptive semantic segmentation. For object detection, Wang et
al. [54] propose SN to normalize the object size of the source
domain leveraging the statistics of the target domain to close the
size-level domain gap. SF-UDA [55] computes motion coherence
over consecutive frames to select the best scale for the target
domain. SRDAN [56] employes scale-aware and range-aware
feature alignment to match the distribution between two domains.
MLC-Net [57] adopts the meanteacher paradigm to address the
geometric mismatch between point clouds from source and target
domains. While these works have made great progress in domain
adaptive outdoor 3D object detection, domain adaptation for
indoor scene understanding tasks are still under exploration.

3 APPROACH

In this section, we first discuss our position-level annotating strat-
egy. Then we introduce the weakly-supervised training paradigm
for 3D object detector called BackToReality. Finally, we present
BackToReality++ with differentiable label enhancement and label-
assisted self-training, which enables efficient end-to-end training
and further improves the detection performance.

3.1 Position-level Annotation
As choosing a point in the 3D space is hard, we divide the labeling
process into two steps: firstly we label the center of an object in
a proper 2D view of the scene, and compute the line that goes
through this center and the focus point of the camera according
to the camera parameters of the 2D view. Secondly we choose a
point on the line to determine the object’s center in the 3D space.
This strategy requires less than 5s to label an instance, and the
labeling error can be controlled within 10% of the instance size.
More details can be found in supplementary material.

The input of our approach is a 3D shape repository and point
cloud scenes with position-level annotations, and output is a 3D
detector which is able to predict precise bounding boxes. When
the 3D scene is scanned, in many cases we can acquire mesh data
which contains more geometric information than point clouds.
Therefore our method also take consideration of the situation when
mesh data is available in the training scenes.

3.2 BackToReality
Fig. 3 illustrates the framework of BackToReality. Given real
scenes with position-level annotations, we utilize 3D shapes to
convert the weak labels into virtual scenes, which are utilized
to provide additional supervision for the training of the detector.
Then we propose a virtual-to-real domain adaptation method to
transfer the knowledge contained in the fully-annotated virtual
scenes back to reality.
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Fig. 3. The framework of our BR approach. Given real scenes with position-level annotations, we first enhance the weak labels to get fully-
annotated virtual scenes. Then the real scenes and virtual scenes are fed into the detector, trained with weakly-supervised and fully-supervised
detection loss respectively. During training we use the precise object centers in virtual scenes to refine the imprecise centers in real scenes. Strong-
weak adversarial domain adaptation method is utilized to align the distributions of features from both domains. The global discriminator outputs
judgments for each scene, and the proposal discriminator outputs judgments for each object proposal. (Here GRL refers to gradient reversal layer;
Dg and Dp stand for the global and proposal discriminators respectively.)

3.2.1 Shape-guided Label Enhancement

Due to lost object size information and imprecise object centers,
it is challenging to train a 3D detector which predicts accurate
bounding boxes. In spite of this, position-level annotations can
provide a coarse layout of the scenes. By assembling synthetic 3D
shapes according to the layout, we are able to enhance the weak
labels and generate accurately annotated virtual scenes where
sizes are available and centers are precise. Our label enhancement
method includes two steps: 1) first we compute some basic
properties of 3D shapes; 2) then we place these shapes to generate
physically self-consistent virtual scenes from the labels.

Definition of Shape Properties: Given a synthetic 3D shape,
which is represented as O ∈ RN×3, we assume it is axis-aligned
and normalized into a unit sphere. The length, width and height of
O is defined as l,w and h. Then we divide the categories of shapes
into three classes: supporter, stander and supportee. Supporters
and standers are objects that can only be supported by ground,
with the difference that standers are not likely to support other
things. Other categories are supportees.

If a shape belongs to supporter, three properties are calculated:
minimum-area enclosing rectangle (MER), supporting surface
height (SSH) and compactness of the supporter surface (CSS).
The MER is computed in XY plane, which is the minimum
rectangle enclosing all the points of the shape. The SSH is the
height of the highest surface on which other objects can stand.
The CSS is a boolean value, indicating whether the supporting
surface can be approximated by the MER.

Virtual Scene Generation: We utilize a three-stage approach
to construct the virtual scenes, which is equivalent to generate
the position of each shape stage by stage: 1) we first refine the
coarse layout provided by position-level annotations and generate
the initial positions; 2) then we generate gravity-aware positions
by restoring the supporting relationships between objects; 3) lastly
we generate collision-aware positions to make the virtual scenes
physically self-consistent. The pipeline is shown in Fig. 4.

To generate initial positions, we need to recover a more precise
layout from the geometric information of the scenes. Given a scene

in mesh format, we first oversegment the meshes using a normal-
based graph cut method [58]. The result is a segment graph, where
the nodes indicating segments and the edges denoting adjacency
relations. Then for horizontal segments whose area is larger than
Amin and height is larger than Hmin, we iteratively merge their
neighbors into them if the height difference between the horizontal
segment and the neighbor segment is smaller than ∆h. Once
merged, the segments are considered as a whole and the height of
the new merged segment is set to be same as the original horizontal
segments. After merging, each horizontal segment is represented
by its MER. If only one supporter’s center falls in a MER, we
assign this MER to the supporter. When the centers of multiple
supporters fall in the sameMER, we perform K-means clustering
of the horizontal segment according to these centers and calculate
MER for each supporter respectively.

Then we place the 3D shapes of corresponding categories
on the centers given by position-level annotations and utilize the
horizontal segments to refine the layout. The initial positions of the
shapes are represented by a dictionary, whose key is the instance
index and value is a list:

[(x, y, z), (sx, sy, sz), θ, O] (1)

where the instance index is integer ranging from 1 to the number
of objects in the scene. (x, y, z) denotes the center coordinates.
(sx, sy, sz) indicates the scales in three dimensions. θ and O
represent the rotation angle and the original point cloud of the
shape. If the shape belongs to supporters and has been assigned a
horizontal segment, we use the MER of that segment to initialize
the above parameters. That is, we choose a supporter whose
CSS is True and make the MER of this supporter overlap
with the horizontal segment. Otherwise we initialize the above
list randomly. If only point cloud data is available, we simply
perform random initialization and the following stages are the
same. As the random initialization of scale should be constrained
in a reasonable range, we first estimate the average size (X,Y, Z)
of objects in each category. Then we uniformly sample sx, sy and
sz in [0.8X, 1.3X], [0.8Y, 1.3Y ] and [0.8Z, 1.3Z] respectively.
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Fig. 4. The pipeline of our three-stage virtual scene generation method. We first extract horizontal segments from the mesh data and use them to
refine the coarse layout provided by position-level annotations. Then synthetic 3D shapes are placed in virtual scenes according to the new layout
to construct initial virtual scenes. After that we apply gravity and collision constraints on the virtual scenes to restore the lost physical relationships
between objects and make the scenes more realistic.

(X,Y, Z) can be coarsely computed from several fully-annotated
objects.

Next we traverse the initial positions to generate gravity-aware
positions. In this process we only need to change z in the position
dictionary. For supporters and standers, we directly align their
bottoms with the ground (i.e. the XY plane). For a supportee,
if its (x, y) fall in any supporter’s MER, we assign it to the
nearest supporter and align its bottoms with the supporting surface.
Otherwise, it is aligned to the ground.

After that we move the shapes to acquire collision-aware
positions. This stage only x and y in the position dictionary will be
changed. First we sort the key objects by their horizontal distance
to (0, 0). Nearer object template are processed more first, which is
likely to move fewer objects. Then we compute the moving vector
as below:

v =
∑

i∈nearer

di

||di||2
, di = (x− xi, y − yi) (2)

where (x, y) is the coordinates on X-Y plane. When moving the
supporters, the supported objects are moved together. To judge
collision, we compute the distance of the nearest point pair of two
shapes. If the distance is less than 0.02m, the two are considered
colliding. For the supportees, we handle collision in a similar way
with two differences: (1) we sort supportees on a same supporter
by their horizontal distance to the center of the supporter. Further
supportees are processed more first, to avoid objects falling off the
supporter; (2) the moving operation only performs on individuals.
Note that the three generation stages can not only make the virtual
scenes more realistic, but also weaken the impact of imprecise
center labels. Thus the virtual scene generation method is robust
to labeling errors.

Finally, we convert the collision-aware 3D shapes to point
clouds with proper density. As larger surfaces are more likely to
be captured by the sensor, we use the maximum of (lsx)(wsy),
(wsy)(hsz) and (lsx)(hsz) to approximate the surface area
of shapes. Then the number of points for each object is set
proportional to their surface areas using uniform sampling, the
largest one remaining N points.

3.2.2 Virtual-to-Real Domain Adaptation
While the label enhancement approach is able to generate phys-
ically self-consistent fully-annotated virtual scenes, there is still
a huge domain gap between them and the real scenes (e.g. back-
grounds like walls are missed in the virtual scenes). Therefore,

we need to mine useful knowledge in the perfect virtual labels
to make up for the information loss of position-level annotations,
rather than just relying on the virtual scenes.

We refer to the virtual scenes and real scenes as source do-
main and target domain respectively. A virtual-to-real adversarial
domain adaptation method is utilized to solve the above problem,
whose overall objective is:

max
D

min
G

J = Lsup(G)− Ladv(G,D)

= (λ1L1 + λ2L2 + λ3L3)− (λ4L4 + λ5L5)
(3)

where G refers to the object detection network (detector) and D
indicates the discriminators used for adversarial feature alignment.
Lsup aims to minimize the differences between the predicted
bounding boxes and the annotations, which can be further divided
into the loss for center refinement module (L1), fully-supervised
detection loss on source domain (L2) and weakly-supervised
detection loss on target domain (L3). The objective of Ladv is to
align the features from source domain and target domain, which
aims to utilize the knowledge learned from source domain to assist
object detection in target domain. Ladv can be divided into global
feature alignment loss (L4) and proposal feature alignment loss
(L5). Below we detail these loss functions and the network.

Firstly we elaborate on Lsup(G). As shown in Fig. 3, we
divide the detector into three blocks: a backbone which extracts
global semantic features from the scene, a detection module which
generates object proposals from the semantic features, and a
prediction head which predicts the semantic label and bounding
box from each object proposal feature.

During training, we jointly refine the imprecise center labels
in target domain and supervise the predictions of the detector.
As shown in Fig. 5, we jitter the center labels in source domain
by adding noise within 10% of the objects’ sizes to imitate the
labeling error in target domain. Then for each jittered center, we
query its k nearest neighbors in 3D euclidean space from the
global semantic features to construct a local graph, and predict
the center offset through a PointNet-like module:

PN(c) = MLP2

{
max
i∈N(c)

{MLP1[fi; ci − c]}
}

(4)

where PN denotes the PointNet-like module, c indicates the
jittered center label, N(c) is the index set of the k nearest
neighbors of c, fi is the global semantic feature, whose coordinate
is ci, and max refers to the channel-wise max-pooling. We set L1

as the mean square error between the ground-truth center offset
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Features (target)

Center (source)
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Shared

Fig. 5. Demonstration of our center refinement method. We first jitter
the center labels in source domain to imitate the labeling error in target
domain, and utilize a PointNet-like module to predict the center offset
from the local graph of the jittered centers. This module can be directly
utilized to predict the center error in target domain as the global semantic
features from the two domains have been aligned.

and PN(c). Then for fully-supervised training, the detection loss
L2 is the same as the loss utilized in the original method. For
weakly-supervised training, we utilize p to predict the center error
in target domain and acquire refined center labels. We set L3 as
a simpler version of L2 which ignores the supervision for box
sizes and orientations. More details about L3 can be found in
supplementary.

Secondly we analyze Ladv(G,D). We conduct feature align-
ment in an adversarial manner: the discriminator predicts which
domain the features belong to, and the detector aims to generate
features that are hard to discriminate. The sign of gradients is
flipped by a gradient reversal layer [59].

As the virtual scenes and real scenes are processed by the same
network, we hope L3 helps the network learn how to locate each
object in real scenes, and L2 compensates for the information
loss of centers and sizes. However, due to the domain gap, L2

will introduce domain-specific knowledge of the virtual scenes,
which impairs the influence of L3. Besides, the center refinement
module is trained only on source domain, which may not perform
well on target domain. Therefore, we align the global semantic
features and object proposal features with L4 and L5 respectively.
Inspired by [60], the features are aligned with different intensities
at different stages. For global semantic features, we use a PointNet
to predict the domain label. Focal loss [60], [61] is utilized to apply
weak alignment:

L4 = −
B∑
i=1

(1− pi)γ log(pi), γ > 1 (5)

where B is the batch size, and pi refers to the probability of the
global discriminator’s predictions on the corresponding domain.
Features with high p is easy to judge, which means they are
domain-specific features and forcing invariance to them can hurt
performance. So a small weight is used to reduce their impact on
training. For object proposal features, they will be directly taken
to predict the properties for bounding boxes. As the properties
are domain-invariant and have real physical meaning, we strongly
align this stage of features using an objectness weighted L2 loss:

L5 =
B∑
i=1

M∑
j=1

sij(1− pij)2 (6)

where B is the batch size, M is the number of proposals, sij
refers to the objectness label and pij is the probability of the
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chair
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Scene Coordinate
System
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Learnable

Transformation
Differentiable

Constraint

... G

Detailed

Fig. 6. Illustration of differentiable label enhancement. The black line,
the red line, ⊗, ⊕ and � represent the forward propagation, the back-
ward propagation, matrix multiplication, summation and concatenatation
respectively. Given position-level annotations, we follow the training
paradigm of BR to generate virtual scenes and feed both real and virtual
inputs to a shared detector for further processing. However, here we uti-
lize a differentiable module to generate the virtual scenes with gradient
and train this module end-to-end with the detector. Specifically, for each
virtual object, we maintain a set of learnable pose parameters, which
transform the 3D shapes to proper positions in the scenes. To restrict
the optimization space, we further apply a gravity-aware differentiable
constraint on all objects to get the final virtual scenes.

proposal discriminator’s predictions on the corresponding domain.
We detail the architectures of center refinement module and
discriminators in supplementary.

3.3 BackToReality++

We first propose an end-to-end training framework to optimize
the virtual scenes for more reasonable layout. Then we present a
self-training strategy to generate pseudo box-level annotations for
better exploiting the network capability.

3.3.1 Differentiable Label Enhancement

The human-heuristic physical constraints applied in shape-guided
label enhancement do not consider the fine-grained layout of
virtual scenes. Therefore the generated virtual scenes may still
be unreasonable and deviate a lot from the real ones, which leads
to large domain gap. In order to address these limitations, we
further propose differentiable label enhancement to enable end-to-
end training and adjust the virtual scenes in a data-driven manner,
as shown in Fig. 6. We will demonstrate the differentiable frame-
work in two steps: 1) first we define the learnable variables and
generate virtual point cloud scenes with gradient given position-
level annotations; 2) then we show how to jointly optimize the
virtual scenes and the detector.

Generation: Given position-level annotations, we first assign
a synthetic shape O and maintain a set of pose parameters for each
of them, which can be written as an extension of Equation (1):

[(x, y, z), (sx, sy, sz), (∆x,∆y,∆z), θ, O] (7)
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Fig. 7. Demonstration of label-assisted self-training. To fully exploit the
information from both domains, we devise a new training paradigm for
weakly-supervised domain adaptation. After the training phase of BR,
position-level annotations and virtual scenes are utilized again to assist
the process of Non-Maximum Suppression (NMS) and result in pseudo
box-level annotations on real scenes, which serve as explicit supervision
for the detector. To be specific, given box predictions, we utilize the
position-level annotations to filter out predictions with false categories
or imprecise centers, and train an IoU estimator to filter out predictions
with unreasonable box sizes.

where (x, y, z) is the annotated center. (sx, sy, sz),
(∆x,∆y,∆z) and θ are learnable variables and they represent
scaling, translation and rotation respectively. We randomly choose
the synthetic shapes and initialize the learnable scalings and
rotations, while the learnable translations are set to 0 at beginning.
We can convert these parameters to point cloud P by:

S =

sx 0 0
0 sy 0
0 0 sz

 , R =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (8)

T = (x+ ∆x, y + ∆y, z + ∆z), P = (O · S + T ) ·R

Then we concatenate the point cloud of each object to generate
the virtual scenes. In this way, the gradient can be backpropagated
from the detector to the generated point clouds, and then to the
learnable pose parameters, which enables end-to-end training of
the differentiable label enhancement module. Note that in BR,
the virtual scenes are generated offline as the collision-aware
constraint requiresO(N2) time complexity to compute the nearest
distance between two objects. While this differentiable module
can generate virtual scenes in linear time with efficient matrix
operations, which enables online generation.

To restrict the optimization space, we further propose a
gravity-aware differentiable constraint to reduce the degrees of
freedom of the learnable parameters. For each object, apart from
the properties defined in Equation (7), we additionally consider
SSH for supporters and bottom B for all objects (B is the
minimum Z-coordinate of O). We follow the method introduced

Weak
Supervision Detector Box 

Prediction
Strong

Supervision
R R R

Fig. 8. Case when label-assisted self-training does not work. As the label
guiding strategy is unable to bring additional size information, if we apply
it in weakly-supervised training, the generated box-level pseudo labels
are essentially the same as position-level annotations. Note that the
essence of label-assisted self-training strategy is fusing the information
from two domains into a whole and acquiring explicit supervision for the
detector, which only works well for WDA problem.

in Section 3.2.1 to assign supportees to their corresponding sup-
porters. Assume the height of floor is H , then the translation T
for objects stand on the floor can be recomputed as:

T = (x+ ∆x, y + ∆y,H − sz ·B) (9)

and that for supportees on others’ supporting surfaces is:

T = (x+ ∆x, y + ∆y,H − sz · (B − SSH)− sz ·B) (10)

where the underlined properties belong to the corresponding
supporters. As the gravity constraint can be computed in linear
time, that will not affect the efficiency of online generation of the
virtual scenes.

Optimization: We adopt two optimizers to update the weights
of detector and the pose parameters alternatingly in each batch. In
terms of loss function, L2, L4 and L5 can backpropagate gradient
to the differentiable label enhancement module. However, we find
those functions are not suitable for learning proper poses for the
virtual objects: the fully-supervised loss L2 will guide the virtual
scenes to change according to the predictions of detector, and the
domain adaptation losses L4 and L5 only implicitly make features
in real and virtual scenes similar by deceiving the discriminator,
both of which lack clear supervision for the virtual scenes on how
the real scenes look like. Therefore, we add a MMD loss term
to minimize the distribution distance between the object proposal
features of two domains, which clearly guides the virtual scenes
to be closer to the real scenes:

LD =
1

B2M2
||

B∑
i=1

M∑
j=1

φ(A(fSij))− φ(A(fTij ))||2H (11)

where B is the batch size, M is the number of proposals, φ is
the radial basis function (RBF) kernel, A is a spatial self-attention
layer, fS and fT represent the proposal features of source and
target domain respectively. We use object poses from virtual
scenes generated by shape-guided label enhancement method to
initialize the learnable pose parameters.

3.3.2 Label-assisted Self-Training
In BR, we transfer the knowledge of object size contained in the
virtual scenes to real-scene training by feature alignment, which
can be considered as an implicit supervision for the predicted box
sizes on real scenes. However, we find the implicit supervision
is not the optimal training paradigm for this weakly-supervised
domain adaptation (WDA) problem, which ignores the architec-
ture design of the detector and cannot fully exploit the network
capability (we will discuss this issue later in detail). Therefore,
we present a label-assisted self-training method tailored for WDA
to supervise the predicted box sizes explicitly with pseudo box-
level annotations. As shown in Fig. 7, after the training phase of
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BR, position-level annotations and virtual scenes can be utilized
again to assist the process of Non-Maximum Suppression (NMS)
and generate accurate pseudo labels on real scenes. In this way,
the information contained in both domains are fused together,
enabling us to directly train a detector in fully-supervised manner.

We acquire pseudo labels from the output of the detector,
which usually applies Non-Maximum Suppression (NMS) based
on objectness score to remove duplicated bounding boxes during
inference time. As the inference is conducted on the training set,
where position-level annotations are available, we leak the weak
labels to filter out predictions with false categories or imprecise
centers. Predictions that meet any of the following conditions:

pclass 6= gclass (12)

||pcenter − gcenter||2 > r · psize (13)

will not be included in NMS. Where pcenter , psize and pclass
refer to predicted center, size and category, gcenter and gclass refer
to ground-truth center and category. For each predicted box, we as-
sign it a position-level annotation with the nearest center distance.
Moreover, the objectness score cannot accurately reflects the
reliability of the predicted boxes. Inspired by 3DIoUMatch [17],
we train an IoU estimator on the virtual scenes, whose inputs
are the global semantic features and a bounding box and output
is the IoU between this box and the ground-truth. Thanks to
feature alignment, the IoU estimator can be directly utilized on
real scenes. Therefore, we filter out predictions with low IoU and
conduct NMS based on the product of objectness score and IoU.

The final objective of BR++ can be divided into two stages.
For the first stage (differentiable label enhancement and domain
adaptation), the loss function is:

max
D

min
G,S

J = Lsup(G)− Ladv(G,D) + LD(G,S)

= (λ1L1 + λ2L2 + λ3L3)− (λ4L4 + λ5L5)

+ λ6LD
(14)

where S refers to the learnable pose parameters of each synthetic
shape. The loss function for the second stage (self-training) is:

min
G

J = L2 (15)

which is a fully-supervised loss on the real scenes with pseudo
box-level annotations.

Discussion: We discuss two questions below: 1) Why reusing
the position-level annotations for further training is a non-trivial
solution? 2) Why the explicit box supervision is better than the
implicit feature supervision?

The essence of label-assisted self-training strategy is not bring-
ing additional information for training, but fusing the information
from two domains into a whole. In this way, the implicit feature
supervision is replaced by explicit box supervision, which benefits
the training of detector (we will explain why in the next question).
Fig. 8 shows a toy example when label-assisted self-training will
be a trivial solution. If we first train a detector with only position-
level annotations and then use the weak labels again to guide
the post-processing of box predictions, the resulted box-level
pseudo labels will do no good to the training of detector. That
is because no size information is introduced during the whole
training process, thus the box-level pseudo labels are essentially
the same as position-level annotations.

Compared to the implicit feature supervision, the explicit box
supervision has two advantages. First, it makes full use of the
network architecture designs. Some advanced 3D detectors are
designed for better exploiting the information of bounding box
annotations. For example, H3D-Net utilizes a geometric primitive
module to extract information from centers, edges and faces of
the box annotations, and all voting-based 3D detectors require
bounding boxes to generate the ground-truth for voting. On the
contrary, with only implicit feature supervision, these architecture
designs with strong inductive bias will not be fully utilized.
Second, the box supervision avoids complex hyperparameter-
tuning and shares nearly the same hyperparameters as the fully-
supervised baseline. While in the feature alignment manner, there
are additional hyperparameters and the training paradigm is very
different from the fully-supervised one.

4 EXPERIMENT

In this section, we conduct experiments to show the effectiveness
of our approach. We first describe the datasets and experimental
settings. Then we evaluate the generated virtual scenes and present
the detection results of our method. Finally we design several
ablation studies to show the influence of each component or step
in BR and BR++.

4.1 Experiments Setup
Datasets: We choose ModelNet40 [62] as the dataset of synthetic
3D shapes. ModelNet40 contains 12,311 synthetic CAD models
from 40 categories, split into 9,843 for training and 2,468 for
testing. We perform experiments on ScanNet [63] and Matter-
port3D [64] dataset with two proposed challenging benchmarks.

ScanNet is a richly annotated dataset of indoor scenes with
1201 training scenes and 312 validation scenes. For each object
appeared in the scenes, ScanNet officially provides its correspond-
ing class in ModelNet40. Therefore we choose 22 categories of
ModelNet40 which have more than 50 objects in ScanNet training
set, and report detection performance on them. Since ScanNet
does not provide human-labeled bounding boxes, we predict axis-
aligned bounding boxes and evaluate the prediction on validation
set as in [8], [9], [65], [66]. We name this benchmark ScanNet-
md40. Compared to the 18-category setting in previous works [8],
[9], [65], our ScanNet-md40 benchmark is more challenging.
Apart from the categories of big objects (e.g. desk and bathtub),
we also aim to detect relatively small objects, such as laptop,
keyboard and monitor.

Matterport3D is a more diverse indoor scene dataset with 1554
and 234 splits for training and validation respectively. Collected
from 90 buildings, Matterport3D covers three times as many
rooms as in ScanNet with far more room types including even
outdoor space such as garden and rooftop. Similar to Scan-
Net, we select all 13 shared categories from Matterport3D and
ModelNet40, each containing more than 80 object instances in
Matterport3D training set, and report detection performance on
them. In order to test the performance of 3D detector in predicting
object orientations, we follow [67] to extract oriented bounding
box annotations and evaluate the predictions on validation set.
This benchmark is called Matterport3D-md40.

Compared Methods: To illustrate the effectiveness of
our approach, the popular VoteNet [8] and state-of-the-art
GroupFree3D [9] are selected as our detectors. We compare BR
and BR++ with the following settings: 1) FSB: fully-supervised
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Fig. 9. Average point numbers of objects in each category in the real scenes and the virtual scenes for ScanNet and Matterport3D dataset. For
better comparison between real and virtual scenes, we normalize the average point number of each category to ratios by dividing the summation of
average point numbers among all categories. It can be seen that the ratios of each category in the real and virtual scenes are similar, which shows
the effectiveness of our density control method.

baseline, which serves as the upper bound of weakly-supervised
methods; 2) WSB: weakly-supervised baseline, which trains the
detector on real scenes by using L3 only and predicts the average
size for each category; 3) WS3D: another position-level weakly-
supervised approach proposed in [12], which additionally makes
use of a number of precisely annotated bounding boxes; 4) WSBP:
WSB pretrained on the virtual scenes; 5) SESS/3DIoUMatch:
top-performance semi-supervised methods proposed in [16], [17],
which annotate bounding boxes for a small proportion of scenes.

For settings which require the virtual scenes, we conduct ex-
periments on two versions of virtual scenes (from meshes/points),
which are distinguished by subscripts M and P respectively. The
virtual scenes generated with mesh information are named as
mesh-version virtual scenes. Otherwise they are named as point-
version virtual scenes.

Implementation Details: We set N = 10000, Amin =
0.1m2, Hmin = 0.1m, ∆h = 0.02m, k = 16, γ = 3, λ1 = 1.0,
λ2 = 0.1, λ3 = 1.0, λ4 = 0.5, λ5 = 0.5, λ6 = 1.0 and
r = 0.3. The training hyperparameters (including max epochs,
learning rates, weight decays, etc.) for WSB, WS3D, WSBP, BR
and BR++ are set just the same as FSB for fair comparison.

During training of BR, as real scenes are more complicated,
the converging of L3 is much slower than L2. Therefore we
multiple L2 by 0.1 to slow down the training on virtual scenes
and stabilize the process of feature alignment. To better train our
center refinement module, the global semantic features should not
change rapidly. Therefore we first train the detector without L1

until convergence, and then use the whole loss function to fine-
tune the network. For GroupFree3D which has several decoders
and each one outputs a stage of proposal features, we conduct
feature alignment only for the last stage.

For differentiable label enhancement, we use Adam [68] with
a stepwise scheduler to optimize the pose parameters. The initial
learning rate is set to 1e − 3, with decay rate 0.9 and decay step
every 10 epochs. For label-assisted self-training, the IoU threshold
is 0.25 and the objectness threshold is set to 0.9 and 0.3 for
VoteNet and GroupFree3D respectively. The student network is
initialized with the parameters of WSBP. We do not initialize it
with implicitly trained models to ensure it receives fully explicit
supervision.

Different from previous works [8], [9], in ScanNet-md40 we
need to detect small objects, such as bottle, cup and keyboard. As
it is difficult for the network to extract high-quality features of
these objects, we utilize a small object augmentation strategy to
alleviate the problem, which is similar to [69]. Please refer to the
supplementary for more details.

4.2 Results and Analysis
4.2.1 Virtual Scene Evaluation
We first evaluate the statistics of the generated virtual scenes
by computing the average number of points of objects in each
category in real scenes and virtual scenes. As the input point
clouds are downsampled to a given number before fed into the
network, we only care about the ratio of average point numbers of
objects in each category as the numbers can be controlled by the
downsampling scale. We demonstrate the results for ScanNet and
Matterport3D in Fig. 9. It shows that the ratio in our virtual scenes
is similar with that in the real scenes, which indicates the statistics
of the virtual scenes are reasonable.

We also show qualitative visualizations to demonstrate our
scene generation method in Fig. 10. We compare the mesh-version
virtual scenes and the optimized ones generated by differentiable
label enhancement with the real scenes. It is shown that the virtual
scenes can largely preserve the layout of the real scenes, and the
differentiable strategy makes the virtual scenes more reasonable
and similar to the real scenes after the end-to-end optimization.
Note that the virtual scenes are not optimized to imitate the real
scenes everywhere, but to be similar with the real scenes in a
general view and thus make the layouts more reasonable. For
example, there are three lamps in the scene of the first row, one
complete and two partial. After optimization, two of the lamps in
the virtual scenes are scaled down to proper size. Although the
correspondence is not one-to-one, the virtual scenes become more
similar to the real ones overall.

4.2.2 3D Object Detection Results
Results on ScanNet: As shown in Table 1, with position-level
annotations only, WSB reduces the detection accuracy by a large
margin in terms of mAP@0.25 compared to FSB. That’s mainly
because WSB fails to learn the ability of predicting precise centers
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(a) Real Scenes (b) Cared Objects (c) Virtual Scenes (d) Optimized Virtual Scenes

Fig. 10. The qualitative visualization results of our virtual scene generation. (c) and (d) are generated by shape-guided label enhancement and
differentiable label enhancement methods respectively. In (b), (c) and (d), the same color indicates the same object. Gray points are floors, walls
and objects that we do not care. It can be seen that the virtual scenes preserve the coarse scene context and the supporting relationships between
objects, and the differentiable label enhancement method makes the virtual scenes more reasonable and similar to the real scenes after the
end-to-end optimization.

and sizes of bounding boxes according to the scene context.
WS3D makes use of some box annotations and achieve better
performance. However, as it is specially designed for outdoor
3D object detection, WS3D is still far from satisfactory when
coping with the complicated indoor scenes. With pretraining on
the virtual scenes, WSBP has more than 8% improvement over the
WSB. That shows the ability of predicting precise bounding boxes
learned in the source domain has been successfully transferred
to the target domain. With our domain adaptation method to
conduct better transferring, the improvement over the WSB is
boosted to a higher level by BR. The above results shows each
step in BR is necessary: the virtual scenes are helpful to boost
the detection performance, and the domain adaptation method can
further explore the potential of the virtual scenes. Interestingly,
as the virtual scenes become more realistic (from point-version
to mesh-version), the performance of BR improves a lot while
WSBP has little change, which indicates that layout may not be
that important in pretraining as in domain adaptation.

With the differentiable label enhancement and label-assisted
self-training methods, BR++ further achieves significant improve-
ment over BR and the final performance gap between FSB and
BR++ (for GroupFree3D) is within 2%. The performance gap
between mesh-version and point-version virtual scenes is also
reduced, which shows the end-to-end optimization of virtual
scenes and the detector closes the domain gap between real and
virtual scenes and reduces the requirement for layout initialization.

In terms of class-specific results, on some categories the
mAP@0.25 of the BR and BR++ (for GroupFree3D) even

achieves the highest performance among all the methods including
the FSB. However, all methods fail to precisely detect cup and bot-
tle, which shows current 3D detectors still face huge challenges in
small object detection. We also note the per-category performance
of GroupFree3D is not stable, this is because GroupFree3D has
6 decode heads and we report the highest performance among all
heads for each method.

Results on Matterport3D: As a more challenging dataset,
we find advanced detectors which achieve high performance on
ScanNet such as MLCVNet [65] and GroupFree3D [9] may fail
to perform well on Matterport3D. Therefore we only conduct
experiments based on VoteNet detector, as shown in Table 2.

Although FSB gets lower performance than that on ScanNet-
md40 due to the more complex scene context, we find WSB and
WS3D perform better, which is because the distribution of object
size in Matterport3D has smaller variance and thus is closer to
the average size. As the layouts of scenes are diverse, mesh-
version virtual scenes do not perform significantly better than
point-version ones. Note that though WSBP outperforms BR in
terms of mAP@0.25, its mAP@0.5 is much lower according to
Table 3 and thus BR is still a better solution. It can be seen that
the final performance gap between FSB and BR++ is within 2%
again in terms of mAP@0.25, which shows the effectiveness and
generalization ability of our proposed methods.

Comprehensive Comparison: We further compare our meth-
ods with state-of-the-art semi-supervised methods for indoor 3D
object detection, as shown in Table 3. Under the same level of
annotating time (5s for weakly-supervised methods, 6s for semi-
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TABLE 1
The class-specific detection results (mAP@0.25) of different weakly-supervised methods on ScanNet validation set. (FSB is the fully-supervised

baseline. † indicates the method requires a small proportion of bounding boxes to refine the prediction. Other methods only use position-level
annotations as supervision. We set best scores in bold, runner-ups underlined.)

Setting batht. bed bench bsf. bot. chair cup curt. desk door dres. keyb. lamp lapt. monit. n.s. plant sofa stool table toil. ward. mAP@0.25

Vo
te

N
et

FSB [8] 66.8 86.2 24.4 55.6 0.0 88.3 0.0 48.5 62.8 45.8 24.1 0.1 47.2 5.2 62.1 73.2 13.4 88.7 35.1 62.6 94.6 7.8 45.1
WSB 21.9 46.9 0.3 2.3 0.0 53.7 0.0 0.9 32.1 1.0 6.6 0.1 0.2 0.1 1.8 53.6 0.1 57.0 4.6 6.4 19.7 0.0 14.1
WS3D† [12] 22.0 58.5 10.3 5.8 0.0 60.4 0.0 4.1 26.7 3.2 1.6 0.0 14.0 0.6 18.6 46.3 0.4 32.7 11.8 23.5 65.0 0.0 18.4
WSBPP 43.2 58.0 2.4 16.1 0.0 75.1 0.7 7.9 54.2 6.4 7.1 2.3 35.2 18.4 12.8 64.0 4.4 68.5 20.2 22.0 71.6 5.2 27.1
WSBPM 45.0 49.6 5.5 18.5 0.0 62.7 2.9 11.4 49.6 6.9 2.5 1.0 30.0 7.6 21.4 64.8 7.3 79.6 23.1 35.2 80.9 2.2 27.6
BRP (Ours) 51.2 73.0 16.4 27.1 0.1 70.3 0.0 8.3 44.5 7.3 16.0 1.5 40.2 7.7 42.1 50.8 7.4 67.1 10.7 39.0 88.4 18.1 31.2
BRM (Ours) 57.1 80.4 14.3 31.7 0.0 77.4 0.0 13.2 49.7 11.3 14.8 1.0 43.5 6.0 56.5 65.0 10.6 80.2 26.9 44.2 91.4 6.5 35.5
BR++P (Ours) 51.4 82.8 11.7 41.3 0.0 80.5 0.1 25.0 58.2 20.3 17.8 0.7 34.7 0.9 56.4 67.6 3.3 86.1 18.8 50.5 94.8 1.6 36.6
BR++M (Ours) 49.1 82.3 35.0 42.2 0.0 81.4 0.6 29.9 57.4 22.4 20.7 1.3 30.6 8.4 51.8 80.1 5.5 83.5 12.1 52.1 91.9 5.5 38.3

G
ro

up
Fr

ee
3D

FSB [9] 86.2 87.5 16.3 49.6 0.6 92.5 0.0 70.9 78.5 53.5 56.0 6.4 68.2 11.5 81.5 88.5 15.2 88.2 45.6 65.0 99.7 31.2 54.2
WSB 75.0 75.7 4.3 17.2 0.0 81.4 0.0 3.5 34.0 4.7 3.2 2.1 46.6 3.3 45.8 52.8 8.3 71.0 15.7 18.1 90.8 0.7 29.7
WS3D† [12] 71.9 78.3 0.9 20.2 0.8 79.2 1.0 2.9 47.6 7.7 10.6 19.2 41.6 13.5 65.6 41.2 0.8 74.6 17.7 26.3 88.9 1.7 32.4
WSBPP 71.9 77.1 7.7 25.2 3.0 80.6 0.4 3.2 50.1 10.5 36.3 17.0 52.9 30.3 59.9 63.8 9.6 78.2 28.4 25.3 93.3 14.4 38.2
WSBPM 81.8 82.6 0.0 35.0 0.0 77.5 0.4 27.1 38.4 7.6 22.3 9.7 44.3 24.4 65.4 76.5 5.5 62.4 34.7 28.7 99.7 5.4 37.7
BRP (Ours) 72.3 73.5 45.8 27.7 0.0 77.2 8.2 30.8 35.0 17.8 51.7 0.3 64.2 25.0 63.5 66.6 23.8 86.7 33.9 37.6 98.3 5.2 43.0
BRM (Ours) 85.3 90.9 8.8 34.3 1.9 80.0 7.7 24.7 58.0 20.8 45.4 31.3 64.4 25.8 67.5 76.7 27.3 91.4 43.3 46.7 94.8 8.3 47.1
BR++P (Ours) 81.0 87.5 16.9 37.4 0.0 82.8 0.0 48.6 50.2 52.4 60.2 34.4 53.5 55.8 80.2 76.6 5.7 90.2 41.5 45.8 97.2 8.6 50.3
BR++M (Ours) 83.3 99.9 0.9 37.1 0.0 82.7 0.5 56.1 58.6 53.0 72.9 15.6 69.1 50.0 83.4 92.5 5.6 89.1 19.0 37.5 97.6 53.6 52.6

Ground-truth BRWSB BR++

Fig. 11. Visual results on ScanNet. We compare the predictions of WSB, BR and BR++ after NMS with the ground-truth bounding boxes. BR can
produce more accurate detection results with higher confidence, so after NMS the false positives are far less than WSB. BR++ detects all objects
in the scene with more accurate box sizes than BR.

supervised ones), our approach surpasses all other methods by
a large margin in terms of mAP@0.25 and mAP@0.5 on both
benchmarks. In terms of mAP@0.25, BR++ even outperforms
current semi-supervised methods with 3.6× less annotating time.

4.2.3 Training Cost:
We further analyze the training cost of BR and BR++. As there are
two stages in BR++, we divide BR++ into BRDLE (differentiable
label enhancement) and BRST (label-assisted self-training) and
compare the training time of them with BR respectively. We train
BR and BR++ with VoteNet as backbone and report the training
time in Table 4. It can be seen that BRDLE is slower than BR due
to there are additional pose parameters of objects to be optimized.
BRST is faster than BR, as the teacher network is fixed and student
network only needs to process real scenes. In terms of overall
training time (on a 2-GPU machine), BR and BR++ take 11.2
and 16.2 hours respectively, which is acceptable. Moreover, BR++
provides several choices for the user. If training time is limited,
user can only train BRDLE or first train BR then train BRST,
which can still achieve great improvement upon BR.

4.2.4 Visualization Results:
We visualize the detection results of WSB, BRM and BR++M
(for VoteNet) after NMS on ScanNet. As shown in Fig. 11, BR
produces more accurate detection results with higher confidence,
so after NMS the false positives are far less than WSB. BR++
detects all objects in the scene with more accurate box sizes than
BR. The visualization further confirms the effectiveness of the
proposed methods.

4.3 Ablation Study
In this section, we adopt VoteNet as the detector and conduct
ablation experiments on the ScanNet dataset. Point-version virtual
scenes and initialization are used for BR and BR++ respectively.

4.3.1 Ablation Study for BR
We design ablation experiments to study the influences of each
scene generation step and each domain adaptation loss to the
performance of our BR approach. Moreover, we further conduct
robustness test to show how labeling error will influence the
performance.
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TABLE 2
The class-specific detection results (mAP@0.25) of different weakly-supervised methods on Matterport3D validation set. (FSB is the

fully-supervised baseline. † indicates the method requires a small proportion of bounding boxes to refine the prediction. Other methods only use
position-level annotations as supervision. We set best scores in bold, runner-ups underlined.)

Setting batht. bed bench chair curt. desk door dres. n.s. sofa stool table toil. mAP@0.25
Vo

te
N

et
FSB [8] 91.6 93.3 5.9 64.0 10.6 18.8 18.4 4.3 71.6 67.7 10.6 34.3 66.6 42.9
WSB 65.2 58.1 0.5 52.7 0.3 8.6 3.7 1.0 11.5 54.1 10.9 13.1 61.4 26.2
WS3D† [12] 70.8 64.1 0.2 51.1 0.3 5.2 3.2 7.4 14.1 53.7 8.8 13.6 70.9 28.0
WSBPP 87.4 83.8 2.5 63.4 5.2 16.1 3.8 9.4 55.1 70.4 25.9 18.0 66.8 39.0
WSBPM 84.4 83.3 4.1 61.0 7.2 3.6 3.5 1.3 71.3 64.5 21.8 22.0 73.1 38.6
BRP (Ours) 83.9 72.4 2.7 58.6 1.8 9.9 10.1 1.6 61.2 64.7 14.6 24.6 69.2 36.6
BRM (Ours) 80.1 82.5 5.3 58.2 5.1 9.0 8.5 0.8 64.0 59.0 12.5 24.8 70.2 36.9
BR++P (Ours) 94.6 90.9 2.6 64.5 2.3 13.7 10.3 2.7 63.3 61.2 26.5 30.8 68.5 40.9
BR++M (Ours) 96.8 90.2 6.0 65.1 2.2 23.1 10.6 2.1 58.0 62.0 22.3 29.4 67.0 41.1

TABLE 3
The detection results (mAP@0.25 and mAP@0.5) and average

annotating time per object of different methods. Annotating time 6s, 12s
and 18s stand for labeling 5%, 10% and 15% scenes for

semi-supervised methods. We adopt VoteNet as the detector and
utilize mesh-version virtual scenes for BR and BR++.

Method Annotating mAP
Time @0.25 @0.5

Sc
an

N
et

FSB [8] 120s 45.1 28.0
WS3D [12] 5s 18.4 0.8

SESS [16]
6s 22.8 9.2
12s 28.1 12.8
18s 34.5 20.3

3DIoUMatch [17]
6s 30.9 16.5
12s 34.9 22.3
18s 38.2 25.2

WSBPM 5s 27.6 3.8
BRM (Ours) 5s 35.5 14.8

BR++M (Ours) 5s 38.3 18.9

M
at

te
rp

or
t3

D

FSB [8] 120s 42.9 16.4
WS3D [12] 5s 28.0 0.7

SESS [16]
6s 21.1 3.5
12s 26.4 7.3
18s 31.8 12.1

3DIoUMatch [17]
6s 26.2 8.7
12s 32.7 13.9
18s 34.6 14.8

WSBPM 5s 38.6 6.2
BRM (Ours) 5s 36.9 10.1

BR++M (Ours) 5s 41.1 12.1

TABLE 4
Total number of trianing epoches and training time of each epoch for
different methods. +60 refers to the finetuning stage for training the

center refinement module. We train all methods on two RTX 3090 GPU.

Methods Stage Epoch Time (s)

BR – 180 + 60 168.72

BR++ BRDLE 180 + 60 198.67
BRST 90 116.52

In Table 5, we illustrate that in our virtual scene generation
pipeline, the physical constraints and density control are effective.
As the virtual scenes become more realistic, the performance of
our BR approach is getting better. In Table 6, we show the effect
of each domain adaptation module and the center refine module.
It can be seen that with global alignment or object proposal
alignment, the detection performance can be boosted by 3.5%
and 2.2% respectively. By combining the two kinds of feature
alignments, we achieve higher detection accuracy. With the center
refinement method, the performance is further boosted by 1.0%.

TABLE 5
The detection results (mAP@0.25) of BR with virtual scenes at different

generation stages on ScanNet. Here the detector is VoteNet and the
virtual scenes are point-version.

Gravity Collision Density mAP@0.25Constrain Constrain Control
26.3

X 27.2
X X 28.5
X X X 31.2

TABLE 6
The detection results (mAP@0.25) of BR with different domain

adaptation modules on ScanNet. Here the detector is VoteNet and the
virtual scenes are point-version.

Global Proposal Center mAP@0.25Alignment Alignment Refinement
24.2

X 28.7
X 27.4

X X 30.2
X X X 31.2

In our labeling strategy, the center error is within 10% of
the object’s size, which is defined as error rate. To show the
robustness of our approach, we gradually increase this rate from
10% to 50% by randomly jittering the centers according to the box
sizes, and report the detection results of WSB and BR in terms of
mAP@0.25. As shown in Table 7, with the increasing of error rate,
the performance of BR degrades more slowly than WSB. Even if
the error rate is 50%, which allows us to label the centers in a
more time-saving strategy, BR can still achieve satisfactory results
(3.6% lower in terms of mAP@0.25).

4.3.2 Ablation Study for BR++
We design ablation experiments to study the effects of each
component of differentiable label enhancement and label-assisted
self-training on the performance of BR++.

TABLE 7
The detection results (mAP@0.25) of BR under different error rate for

center labeling on ScanNet. We adopt VoteNet as the detector and
utilize point-version virtual scenes for BR.

Method Error Rate
10% 20% 30% 40% 50%

WSB 14.1 12.2 9.9 8.4 6.8
BRP (Ours) 31.2 30.3 29.4 28.7 27.6
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TABLE 8
The detection results (mAP@0.25) of BR++ (w/o label-assisted

self-training) with all ablated versions of differentiable label
enhancement on ScanNet. Here the detector is VoteNet and we
initialize the pose parameters with point-version virtual scenes.

Method mAP@0.25
Without optimization (remove LD) 32.1
Optimize with L4 + L5 (instead of LD) 31.8
Optimize with L2 (instead of LD) 27.9
Remove differentiable constraint 32.8
Without initialization 32.3
The full differentiable label enhancement 33.6

TABLE 9
The detection results (mAP@0.25) of BR++ with all ablated versions of

label-assisted self-training on ScanNet. Here the detector is VoteNet
and the teacher network is trained with point-version initialization.

Center Category IoU-based mAP@0.25Filter Filter NMS
34.2

X 35.2
X 34.9

X X 36.0
X 35.0

X X X 36.6

To directly show the effects of each component in differen-
tiable label enhancement, we report the detection results without
label-assisted self-training in Table 8. The first row indicates that
the online generation of virtual scenes is better than the offline
generation in BR, which is because online generation provides
one-to-one correspondence between real and virtual scenes and
stabilizes the feature alignment. The second and third rows show
the necessity of LD, as L2, L4 and L5 lack clear supervision
for the virtual scenes. Moreover, L2 significantly degrades the
performance, that is because this loss term will hinder the detector
to update parameters from false predictions. The fourth and fifth
rows verify the effectiveness of the differentiable gravity constraint
and the initialization of pose parameters.

In Table 9, we show the effect of each technique used in
label-assisted self-training. The first row shows that even without
the proposed techniques, the performance of the student network
is still high than the teacher network (34.2 vs 33.6), which
demonstrates the explicit box supervision is better than the implicit
feature supervision. The following rows show that reusing the
position-level annotations and virtual scenes for further filtering
imprecise predictions is effective.

5 CONCLUSION AND DISCUSSION

In this paper, we have proposed a new training paradigm, namely
Back to Reality (BR), for 3D object detection trained using only
object centers and class tags as supervision. To fully exploit the in-
formation contained in the position-level annotations, we consider
them as the coarse layout of scenes, which is utilized to assemble
3D shapes into fully-annotated virtual scenes. We apply physical
constraints on the generated virtual scenes to make sure the rela-
tionship between objects is reasonable. In order to make use of the
virtual scenes to remedy the information loss from box annotations
to centers, we present a virtual-to-real domain adaptation method,
which transfers the useful knowledge learned from the virtual
scenes to real-scene 3D object detection. We have also presented
BR++ with differentiable label enhancement and label-assisted

self-training, which optimizes the virtual scenes end-to-end with
the detector to close the domain gap in a data-driven manner,
and reuses the position-level annotations to generate box-level
pseudo labels as explicit supervision for the detector. Extensive
experiments on ScanNet and Matterport3D dataset have shown
that the performance of our approach surpasses the state-of-the-
art weakly-supervised and semi-supervised methods for 3D object
detection by a large margin, and we achieve comparable detection
performance with some popular fully-supervised methods with
less than 5% of the labeling labor.

Despite of the high data utilization efficiency, we are not able
to provide more choice for the tradeoff of time and accuracy as
semi-supervised methods do. In future work, combining position-
level weakly-supervised methods and semi-supervised methods
may be a promising way to better exploit the information from
limited annotations. Moreover, the number of object categories
in ModelNet40 is limited, which makes it hard to apply our
method on a wider range of scenarios. Recently, OpenShape [70]
proposes a text-3D model which is able to retrieve objects of any
category from a Internet-level 3D shape database [71] given the
text desciption. By further combining BR and OpenShape, we can
acquire synthetic 3D shapes in any category and thus perform
weakly-supervised 3D object detection on more classes.
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