
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Back to Reality: Learning Data-Efficient 3D
Object Detector with Shape Guidance

(Supplementary Material)
Xiuwei Xu, Student Member, IEEE, Ziwei Wang, Student Member, IEEE, Jie Zhou, Senior Member, IEEE,

and Jiwen Lu, Senior Member, IEEE

F

APPENDIX A
OVERVIEW

This supplementary material is organized as follows:

• Appendix B details the Approach section in the main
paper.

• Appendix C details our augmentation strategy for small
objects during training.

• Appendix D shows more statistics of ScanNet-md40 and
Matterport3D-md40.

• Appendix E details the position-level annotation.

APPENDIX B
APPROACH DETAILS

In this section, we show the details in our BackToReality ap-
proach, which is divided into shape-guided label enhancement
and virtual2real domain adaptation.

B.1 Label Enhancement

We show the exact definitions of some concepts appeared in
Section 3.2.1 of the main paper as below.

Shape Properties: The MER is computed in XY plane,
which is the minimum rectangle enclosing all the points of the
object template. The SSH is the height of the largest surface
on which other objects can stand. The CSS is a boolean value,
indicating whether the supporting surface is similar with the
MER (i.e. we can use the MER to approximate the supporting
surface if CSS is true).

In order to calculate MER, we use the OpenCV [1] toolbox
to calculate the MER of 2D point set. As OpenCV cannot be
directly utilized to process point clouds, we first project the object
templates to XY plane to acquire 2D point sets. Then we calculate

• The authors are with the Beijing National Research Center for
Information Science and Technology (BNRist), Department of
Automation, Tsinghua University, Beijing 100084, China. E-mail:
xxw21@@mails.tsinghua.edu.cn, wang-zw18@mails.tsinghua.edu.cn,
jzhou@tsinghua.edu.cn, lujiwen@tsinghua.edu.cn. (Corresponding
author: Jiwen Lu)

the MER of a point set S = {(x1, y1), (x2, y2), ..., (xn, yn)}
as below:

(x, y, l, w, θ) = minAreaRect(1000 ∗ S) (1)

MER = (x, y,
l

1000
,
w

1000
, θ) (2)

where minAreaRect is a function in OpenCV, which takes integer
2D point set as input and returns a rectangle, and rectangle
is represented by a quintuple (x, y, length, width, θ), which
indicates the center coordinate, length, width and rotation angle of
a rectangle. 1000∗S means that we multiply all the coordinates in
S by 1000 and then convert the coordinates from float to integer,
which can reduce the rounding error.

To compute SSH , we first utilize Open3D [2] to get the
normals of each point from point cloud. Then if the normal of
a point is almost vertical (i.e. the normal’s length along Z-axis is
greater than 0.88), we record the coordinate of this point. After
traversing all the points, we have recorded a list of coordinates.
We sort the list according to the Z coordinate in ascending order,
and the list of sorted Z coordinate is named as lz . Then get a slice
of lz from index b 45 lenzc to b 9

10 lenzc, where lenz denotes the
length of lz . SSH can be calculated by averaging this slice. Note
that this algorithm suppose the supporter has a large supporting
surface on its top, and it can tolerate 10% points higher than this
surface.

To calculate CSS, we collect points which satisfy SSH −
1
10h < z < SSH + 1

10h from the given object template, where
h is the height of this object template. Then we project these
points to XY plane and name them supporter points PS . If PS

can almost fill the MER, the CSS is set to be True. To analyze
the compactness, we use K-means algorithm to divide PS into 2
clusters: PS1 and PS2. Then we calculate the area of convex hull
of PS1 and PS2. The area is computed by using OpenCV:

A =
contourArea(convexHull(1000 ∗ P))

1000000
(3)

where contourArea and convexHull are functions in OpenCV, P is
a 2D point set and A is the area of P . The areas for PS1 and PS2

are A1 and A2 respectively. So we can compute CSS as below:

CSS =

{
True, A1 +A2 > 0.9 ∗ l ∗ w
False, otherwise

(4)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

where l and w are the length and width of the MER of this object
template.

Segment Properties: Next we provide the definitions of
horizontal segment, the area of segment and the height of segment.

For a segment, we define z as the Z coordinate of all the
points on it. Then if |maximum(z) − median(z)| < 0.2 or
|minimum(z) −median(z)| < 0.2, we consider this segment
is horizontal. To calculate the area of segment, we directly utilize
(3) and take all points on the segment as input (ignore the Z
coordinates of points). To compute the height of a segment, we
follow the same procedure as computing SSH : we first calculate
the normals and pick out points with normals that are almost
vertical, and then we pick out the Z coordinates of these points
and acquire a list lz . The segment’s height is defined as the mean
of lz .

B.2 Domain Adaptation

We first provide detailed definition of L3. Then we show the
architectures of our center refinement module and the two dis-
criminators.

For weakly-supervised training, as only objects’ centers and
semantic classes are available, we set L3 as a simpler version of
L2:

L3 = Lf + Li, Lf = Ls + Lo + Lc (5)

Lf is used to supervise the final prediction, where Ls and Lo are
the cross entropy losses for semantic labels and objectness scores,
and Lc is defined as:

Lc =
∑
i

max(||Cgi − Ci||2 − λSgi, 0) (6)

which denotes the hinge loss for centers. Ci is the i-th predicted
center, Cgi is the nearest ground-truth center to Ci, and Sgi

indicates the average size for the semantic class of this object.
We set λ = 0.05 to approximate the labeling error of centers.
For Li, we only make use of the center coordinates to weakly
supervise the intermediate process of training. For example, in
VoteNet [3], the detection module predicts votes from the semantic
features and aggregate them to generate object proposals, in
which voting coordinates are the intermediate variables need to
be supervised. Here we utilize the Chamfer Distance between
the voting coordinates and the ground-truth center coordinates to
supervise the voting. In GroupFree3D [4], the detection module
utilize KPS to sample the semantic features and generate initial
object proposals, where the sampled points require supervision.
Originally the KPS operation requires us to sample the nearest k
points to the object center from the point cloud belong to this
object. However, we weaken this requirement and sample the
nearest k points without any constraints.

For the center refinement module, we adopt the Set Abstraction
(SA) layer [5] to extract feature from the local KNN graph.
Then a MLP is utilized to predict center offset from the feature.
The SA layer first concatenates the relative coordinates between
the center and its neighbors to the features of the neighbors,
which is followed by a shared MLP (MLP (256, 128)1) and a
channel-wise max-pooling layer. The pooled feature contains the
local information of the center, which is then concatenated with
the one-hot vector of the center’s semantic class (we name the

1. Numbers in bracket are output layer sizes. Batchnorm is used for all layers
with ReLU except for the final prediction layer in MLP (64, 3).

Fig. 1. Architecture of the global and proposal discriminators. (Global on
the left, proposal on the right.)

feature after concatenation as center feature). We utilize another
MLP (MLP (64, 3)) to predict the center offset from the center
feature. For the global and proposal discriminators, we show their
architectures in Figure 1.

APPENDIX C
AUGMENTATION STRATEGY

As the number of scenes which contain small objects2 and the
probability of small objects being sampled are relatively smaller
than others, it is difficult for the detector to learn how to locate
small objects in complex scenes. Therefore we utilize an augmen-
tation strategy similar to [6] to handle the problem.

During trianing, we oversample the virtual scenes which
contain small objects twice in each epoch. We further copy-
paste small objects to the oversampled virtual scenes: for each
small object, we copy it with a probability of 0.75 and paste it
randomly in the scene (the pasted center must be in the axis-
aligned bounding box of the whole scene). Then we apply gravity
and collision contraints and control the densities of these added
small objects as mentioned in the virtual scene generation method.

Apart from small objects, we also consider the scarce objects3,
as the number of them is relatively small and thus the detector is
not sufficiently trained on these categories. We add the scarce
objects to the oversampled virtual scenes to expand the number of
them. We first decide how many objects of each scarce category
we should add according to Table 2 in the main paper, where we
set 40, 70, 15, 55 and 50 for bathtub, bench, dresser, laptop and
wardrobe respectively. Then we choose scenes which are suitable

2. Small objects are {bottle, cup, keyboard}.
3. Scarce objects are {bathtub, bench, dresser, laptop, wardrobe}.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE 1
Number of objects in each category in the training set and validation set of ScanNet and Matterport3D, and average number of points of objects in

each category in the real scenes and the virtual scenes. Nobject, Npoint, # TR, # VD, # R and # V refer to number of objects, number of points,
training set, validation set, real scenes and virtual scenes respectively.

Property Split Bath- Bed Bench Book- Bottle Chair Cup Cur- Desk Door Dresser Key- Lamp Laptop Monitor Night- Plant Sofa Stool Table Toilet Ward-

tub shelf tain board stand robe

Sc
an

N
et Nobject

TR 113 308 58 786 234 4357 132 408 551 2028 174 193 376 86 574 190 293 406 315 1526 201 98

VD 31 81 21 234 41 1368 34 95 127 467 43 53 83 25 191 34 50 97 51 407 58 19

Npoint
R 2941 3905 1015 2679 101 726 66 2919 1525 1110 1274 74 272 173 370 700 792 2718 525 1282 1445 2762

V 6891 8683 4097 6258 162 2135 91 5495 5004 6048 2703 480 609 343 939 1088 1249 7250 1391 5421 3716 6105

M
at

te
rp

or
t3

D

Nobject
TR 94 200 163 – – 2159 – 532 159 1815 116 – – – – 205 – 257 252 1136 204 –

VD 13 25 14 – – 271 – 82 15 283 17 – – – – 34 – 37 43 189 25 –

Npoint
R 3089 3670 1145 – – 731 – 2146 1436 1864 1474 – – – – 737 – 2014 455 1093 1499 –

V 4819 7300 3199 – – 1480 – 4988 3283 5775 3838 – – – – 943 – 4824 678 2607 2125 –

for adding these objects by calculating the value of correlation
between scenes and scarce categories as below:

Corr(s, c) =
22∑
i=1

lsi(vci − r) (7)

where s indicates a scene and c denotes a scarce category. ls is a
22-dimensional boolean vector where lsi indicates whether there
is an object of the i-th category in s. vc is a 22-dimensional vector
which indicates the correlation between c and other categories:

vci =

{
Num(i,Index(c))
Num(Index(c)) , i 6= Index(c)

0, i = Index(c)
(8)

where Num(...) is a function, whose input is a set of indexs
of category and output is the number of scenes which contain
objects in all the input categories. The larger vci , the stronger
the correlation between c and the i-th category. As we hope the
highly correlated scenes for c do not contain too many categories
with low vci , we introduce a penalty term r to reduce the value of
Corr(s, c) when there are a large number of categories weakly
correlated to c in s. We set r = 0.25 in our experiments.

APPENDIX D
STATISTICS OF DATASETS

We show number of objects in each category in the training set and
validation set of ScanNet and Matterport3D, and average number
of points of objects in each category in the real scenes and the
virtual scenes in Table 1.

APPENDIX E
POSITION-LEVEL ANNOTATION

In this work, we generate the position-level annotations by ran-
domly jittering the original centers according to the labeling error.
The labeling time and error are estimated by a user study.

Labeling tool: We develop the labeling tool based on Mesh-
Lab [7]. As shown in Figure 2 (a), we first generate dense
meshgrids (the black points) surrounding the scene which help
us to fit 3D lines in the following steps. Then for an object to
be annotated, we first select a view and crop its 2D center with
MeshLab. This operation will crop a small proportion of points
along the ray between the focal point and the 2D center, from
which we can fit a 3D line. This process is shown in Figure 2 (b).
Next we need to select a point on this 3D line. A simple way to

TABLE 2
User study: the average labeling time and error rate for some

categories.

bed door table toilet keyboard

Time (s) 3.8 2.9 4.4 5.3 2.6
Error rate (%) 7.7 9.2 5.6 10.2 7.0

achieve this is to change a view and follow the same procedure
to fit another line. Then we can compute the closest point to the
second line on the first line, which is the annotated object center.
Below we detail our labeling tool and the user study.

Labeling strategy: There needs to be a space angle larger
than 45◦ between the two perspectives in order to ensure the
labeling error is small. For objects which can be seen in BEV
(most objects), we label the first line vertically, which is fast and
accurate.

User study: We hire 5 annotators to annotate 10 scenes, each
annotator focusing on a specified category. We choose bed, door,
table, toilet and keyboard as the 5 categories. After annotating,
we compute the average labeling time and error rate4 for each
category, as shown in Table 2. This statistics support the reported
10% error and 5 secs annotation time. We also note that toilets
are harder to label. This is because they are usually located at the
corner of a room, which is hard for annotators to select proper
perspective. A more user-friendly UI design will further reduce
the annotating time and error.

REFERENCES

[1] “Opencv,” [EB/OL], https://opencv.org/. 1
[2] “Open3d: A modern library for 3d data processing,” [EB/OL], http://www.

open3d.org/. 1
[3] Qi, Charles R. and Litany, Or and He, Kaiming and Guibas, Leonidas J.,

“Deep hough voting for 3d object detection in point clouds,” in ICCV,
2019, pp. 9277–9286. 2

[4] Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong,
Xin, “Group-free 3d object detection via transformers,” arXiv preprint
arXiv:2104.00678, 2021. 2

[5] Qi, Charles Ruizhongtai and Yi, Li and Su, Hao and Guibas, Leonidas J,
“Pointnet++: Deep hierarchical feature learning on point sets in a metric
space.” 2

[6] Kisantal, Mate and Wojna, Zbigniew and Murawski, Jakub and Naruniec,
Jacek and Cho, Kyunghyun, “Augmentation for small object detection,”
arXiv preprint arXiv:1902.07296, 2019. 2

4. The error rate is defined as the ratio of the distance from the annotated
center to the real center to the doubled diagonal length of the object.

https://opencv.org/
http://www.open3d.org/
http://www.open3d.org/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b)
Only cropped points

Fig. 2. Demonstration of our labeling process. (a) The labeling tool. We generate dense meshgrids surrounding the scene to help fitting 3D lines.
(b) We choose a view to crop the 2D center of object. The cropped points are then used to fit a 3D line. We can repeat this operation and compute
the center of object with the two lines.

[7] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in
EICC, V. Scarano, R. D. Chiara, and U. Erra, Eds. The Eurographics
Association, 2008. 3

	Appendix A: overview
	Appendix B: Approach Details
	Label Enhancement
	Domain Adaptation

	Appendix C: Augmentation Strategy
	Appendix D: Statistics of Datasets
	Appendix E: Position-level Annotation
	References

